I wanted to find out the correct naming convention when referring to individual preprocessor included in ColumnTransformer (which is part of a pipeline) in param_grid for grid_search.
Environment & sample data:
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, KBinsDiscretizer, MinMaxScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
df = sns.load_dataset('titanic')[['survived', 'age', 'embarked']]
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='survived'), df['survived'], test_size=0.2,
random_state=123)
Pipeline:
num = ['age']
cat = ['embarked']
num_transformer = Pipeline(steps=[('imputer', SimpleImputer()),
('discritiser', KBinsDiscretizer(encode='ordinal', strategy='uniform')),
('scaler', MinMaxScaler())])
cat_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(transformers=[('num', num_transformer, num),
('cat', cat_transformer, cat)])
pipe = Pipeline(steps=[('preprocessor', preprocessor),
('classiffier', LogisticRegression(random_state=1, max_iter=10000))])
param_grid = dict([SOMETHING]imputer__strategy = ['mean', 'median'],
[SOMETHING]discritiser__nbins = range(5,10),
classiffier__C = [0.1, 10, 100],
classiffier__solver = ['liblinear', 'saga'])
grid_search = GridSearchCV(pipe, param_grid=param_grid, cv=10)
grid_search.fit(X_train, y_train)
Basically, what should I write instead of [SOMETHING] in my code?
I have looked at this answer which answered the question for make_pipeline
- so using the similar idea, I tried 'preprocessor__num__', 'preprocessor__num_', 'pipeline__num__', 'pipeline__num_' - no luck so far.
Thank you
You were close, the correct way to declare it is like this:
param_grid = {'preprocessor__num__imputer__strategy' : ['mean', 'median'],
'preprocessor__num__discritiser__n_bins' : range(5,10),
'classiffier__C' : [0.1, 10, 100],
'classiffier__solver' : ['liblinear', 'saga']}
Here is the full code:
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, KBinsDiscretizer, MinMaxScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
df = sns.load_dataset('titanic')[['survived', 'age', 'embarked']]
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='survived'), df['survived'], test_size=0.2,
random_state=123)
num = ['age']
cat = ['embarked']
num_transformer = Pipeline(steps=[('imputer', SimpleImputer()),
('discritiser', KBinsDiscretizer(encode='ordinal', strategy='uniform')),
('scaler', MinMaxScaler())])
cat_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(transformers=[('num', num_transformer, num),
('cat', cat_transformer, cat)])
pipe = Pipeline(steps=[('preprocessor', preprocessor),
('classiffier', LogisticRegression(random_state=1, max_iter=10000))])
param_grid = {'preprocessor__num__imputer__strategy' : ['mean', 'median'],
'preprocessor__num__discritiser__n_bins' : range(5,10),
'classiffier__C' : [0.1, 10, 100],
'classiffier__solver' : ['liblinear', 'saga']}
grid_search = GridSearchCV(pipe, param_grid=param_grid, cv=10)
grid_search.fit(X_train, y_train)
One simply way to check the available parameter names is like this:
print(pipe.get_params().keys())
This will print out the list of all the available parameters which you can copy directly into your params
dictionary.
I have written a utility function which you can use to check if a parameter exist in a pipeline/classifier by simply passing in a keyword.
def check_params_exist(esitmator, params_keyword):
all_params = esitmator.get_params().keys()
available_params = [x for x in all_params if params_keyword in x]
if len(available_params)==0:
return "No matching params found!"
else:
return available_params
Now if you are unsure of the exact name, just pass imputer
as the keyword
print(check_params_exist(pipe, 'imputer'))
This will print the following list:
['preprocessor__num__imputer',
'preprocessor__num__imputer__add_indicator',
'preprocessor__num__imputer__copy',
'preprocessor__num__imputer__fill_value',
'preprocessor__num__imputer__missing_values',
'preprocessor__num__imputer__strategy',
'preprocessor__num__imputer__verbose',
'preprocessor__cat__imputer',
'preprocessor__cat__imputer__add_indicator',
'preprocessor__cat__imputer__copy',
'preprocessor__cat__imputer__fill_value',
'preprocessor__cat__imputer__missing_values',
'preprocessor__cat__imputer__strategy',
'preprocessor__cat__imputer__verbose']