Search code examples
pythonscikit-learngrid-searchgridsearchcv

How to access ColumnTransformer elements in GridSearchCV


I wanted to find out the correct naming convention when referring to individual preprocessor included in ColumnTransformer (which is part of a pipeline) in param_grid for grid_search.

Environment & sample data:

import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, KBinsDiscretizer, MinMaxScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression

df = sns.load_dataset('titanic')[['survived', 'age', 'embarked']]
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='survived'), df['survived'], test_size=0.2, 
                                                    random_state=123)

Pipeline:

num = ['age']
cat = ['embarked']

num_transformer = Pipeline(steps=[('imputer', SimpleImputer()), 
                                  ('discritiser', KBinsDiscretizer(encode='ordinal', strategy='uniform')),
                                  ('scaler', MinMaxScaler())])

cat_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                                  ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(transformers=[('num', num_transformer, num),
                                               ('cat', cat_transformer, cat)])

pipe = Pipeline(steps=[('preprocessor', preprocessor),
                       ('classiffier', LogisticRegression(random_state=1, max_iter=10000))])

param_grid = dict([SOMETHING]imputer__strategy = ['mean', 'median'],
                  [SOMETHING]discritiser__nbins = range(5,10),
                  classiffier__C = [0.1, 10, 100],
                  classiffier__solver = ['liblinear', 'saga'])
grid_search = GridSearchCV(pipe, param_grid=param_grid, cv=10)
grid_search.fit(X_train, y_train)

Basically, what should I write instead of [SOMETHING] in my code?

I have looked at this answer which answered the question for make_pipeline - so using the similar idea, I tried 'preprocessor__num__', 'preprocessor__num_', 'pipeline__num__', 'pipeline__num_' - no luck so far.

Thank you


Solution

  • You were close, the correct way to declare it is like this:

    param_grid = {'preprocessor__num__imputer__strategy' : ['mean', 'median'],
                  'preprocessor__num__discritiser__n_bins' : range(5,10),
                  'classiffier__C' : [0.1, 10, 100],
                  'classiffier__solver' : ['liblinear', 'saga']}
    

    Here is the full code:

    import seaborn as sns
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, KBinsDiscretizer, MinMaxScaler
    from sklearn.compose import ColumnTransformer
    from sklearn.pipeline import Pipeline
    from sklearn.linear_model import LogisticRegression
    
    df = sns.load_dataset('titanic')[['survived', 'age', 'embarked']]
    X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='survived'), df['survived'], test_size=0.2, 
                                                        random_state=123)
    num = ['age']
    cat = ['embarked']
    
    num_transformer = Pipeline(steps=[('imputer', SimpleImputer()), 
                                      ('discritiser', KBinsDiscretizer(encode='ordinal', strategy='uniform')),
                                      ('scaler', MinMaxScaler())])
    
    cat_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                                      ('onehot', OneHotEncoder(handle_unknown='ignore'))])
    
    preprocessor = ColumnTransformer(transformers=[('num', num_transformer, num),
                                                   ('cat', cat_transformer, cat)])
    
    pipe = Pipeline(steps=[('preprocessor', preprocessor),
                           ('classiffier', LogisticRegression(random_state=1, max_iter=10000))])
    
    param_grid = {'preprocessor__num__imputer__strategy' : ['mean', 'median'],
                  'preprocessor__num__discritiser__n_bins' : range(5,10),
                  'classiffier__C' : [0.1, 10, 100],
                  'classiffier__solver' : ['liblinear', 'saga']}
    grid_search = GridSearchCV(pipe, param_grid=param_grid, cv=10)
    grid_search.fit(X_train, y_train)
    

    One simply way to check the available parameter names is like this:

    print(pipe.get_params().keys())
    

    This will print out the list of all the available parameters which you can copy directly into your params dictionary.

    I have written a utility function which you can use to check if a parameter exist in a pipeline/classifier by simply passing in a keyword.

    def check_params_exist(esitmator, params_keyword):
        all_params = esitmator.get_params().keys()
        available_params = [x for x in all_params if params_keyword in x]
        if len(available_params)==0:
            return "No matching params found!"
        else:
            return available_params
    

    Now if you are unsure of the exact name, just pass imputer as the keyword

    print(check_params_exist(pipe, 'imputer'))
    

    This will print the following list:

    ['preprocessor__num__imputer',
     'preprocessor__num__imputer__add_indicator',
     'preprocessor__num__imputer__copy',
     'preprocessor__num__imputer__fill_value',
     'preprocessor__num__imputer__missing_values',
     'preprocessor__num__imputer__strategy',
     'preprocessor__num__imputer__verbose',
     'preprocessor__cat__imputer',
     'preprocessor__cat__imputer__add_indicator',
     'preprocessor__cat__imputer__copy',
     'preprocessor__cat__imputer__fill_value',
     'preprocessor__cat__imputer__missing_values',
     'preprocessor__cat__imputer__strategy',
     'preprocessor__cat__imputer__verbose']