Search code examples
apache-sparkpysparkregexp-replace

Can I use regexp_replace or some equivalent to replace multiple values in a pyspark dataframe column with one line of code?


Can I use regexp_replace or some equivalent to replace multiple values in a pyspark dataframe column with one line of code?

Here is the code to create my dataframe:

from pyspark import SparkContext, SparkConf, SQLContext
from datetime import datetime

sc = SparkContext().getOrCreate()
sqlContext = SQLContext(sc)

data1 = [
  ('George', datetime(2010, 3, 24, 3, 19, 58), 13),
  ('George', datetime(2020, 9, 24, 3, 19, 6), 8),
  ('George', datetime(2009, 12, 12, 17, 21, 30), 5),
  ('Micheal', datetime(2010, 11, 22, 13, 29, 40), 12),
  ('Maggie', datetime(2010, 2, 8, 3, 31, 23), 8),
  ('Ravi', datetime(2009, 1, 1, 4, 19, 47), 2),
  ('Xien', datetime(2010, 3, 2, 4, 33, 51), 3),
]
 
df1 = sqlContext.createDataFrame(data1, ['name', 'trial_start_time', 'purchase_time'])
df1.show(truncate=False)

Here is the dataframe:

+-------+-------------------+-------------+
|name   |trial_start_time   |purchase_time|
+-------+-------------------+-------------+
|George |2010-03-24 07:19:58|13           |
|George |2020-09-24 07:19:06|8            |
|George |2009-12-12 22:21:30|5            |
|Micheal|2010-11-22 18:29:40|12           |
|Maggie |2010-02-08 08:31:23|8            |
|Ravi   |2009-01-01 09:19:47|2            |
|Xien   |2010-03-02 09:33:51|3            |
+-------+-------------------+-------------+

Here is a working example to replace one string:

from pyspark.sql.functions import regexp_replace, regexp_extract, col
df1.withColumn("name", regexp_replace('name', "Ravi", "Ravi_renamed")).show()

Here is the output:

+------------+-------------------+-------------+
|        name|   trial_start_time|purchase_time|
+------------+-------------------+-------------+
|      George|2010-03-24 07:19:58|           13|
|      George|2020-09-24 07:19:06|            8|
|      George|2009-12-12 22:21:30|            5|
|     Micheal|2010-11-22 18:29:40|           12|
|      Maggie|2010-02-08 08:31:23|            8|
|Ravi_renamed|2009-01-01 09:19:47|            2|
|        Xien|2010-03-02 09:33:51|            3|
+------------+-------------------+-------------+

In pandas I could replace multiple strings in one line of code with a lambda expression:

df1[name].apply(lambda x: x.replace('George','George_renamed1').replace('Ravi', 'Ravi_renamed2')

I am not sure if this can be done in pyspark with regexp_replace. Perhaps another alternative? When I read about using lambda expressions in pyspark it seems I have to create udf functions (which seem to get a little long). But I am curious if I can simply run some type of regex expression on multiple strings like above in one line of code.


Solution

  • This is what you're looking for:

    Using when() (most readable)

    df1.withColumn('name', 
                   when(col('name') == 'George', 'George_renamed1')
                   .when(col('name') == 'Ravi', 'Ravi_renamed2')
                   .otherwise(col('name'))
                  )
    

    With mapping expr (less explicit but handy if there's many values to replace)

    df1 = df1.withColumn('name', F.expr("coalesce(map('George', 'George_renamed1', 'Ravi', 'Ravi_renamed2')[name], name)"))
    

    or if you already have a list to use i.e. name_changes = ['George', 'George_renamed1', 'Ravi', 'Ravi_renamed2']

    # str()[1:-1] to convert list to string and remove [ ]
    df1 = df1.withColumn('name', expr(f'coalesce(map({str(name_changes)[1:-1]})[name], name)'))
    

    the above but only using pyspark imported functions

    mapping_expr = create_map([lit(x) for x in name_changes])
    
    df1 = df1.withColumn('name', coalesce(mapping_expr[df1['name']], 'name'))
    

    Result

    df1.withColumn('name', F.expr("coalesce(map('George', 'George_renamed1', 'Ravi', 'Ravi_renamed2')[name],name)")).show()
    +---------------+-------------------+-------------+
    |           name|   trial_start_time|purchase_time|
    +---------------+-------------------+-------------+
    |George_renamed1|2010-03-24 03:19:58|           13|
    |George_renamed1|2020-09-24 03:19:06|            8|
    |George_renamed1|2009-12-12 17:21:30|            5|
    |        Micheal|2010-11-22 13:29:40|           12|
    |         Maggie|2010-02-08 03:31:23|            8|
    |  Ravi_renamed2|2009-01-01 04:19:47|            2|
    |           Xien|2010-03-02 04:33:51|            3|
    +---------------+-------------------+-------------+