Given 1d arrays w and x, below, I can form the Cartesian product using the following code.
import numpy as np
w = np.array([1, 2, 3, 4])
x = np.array([1, 2, 3, 4])
V1 = np.transpose([np.repeat(w, len(x)), np.tile(x, len(w))])
print(V1)
[[1 1]
[1 2]
[1 3]
[1 4]
[2 1]
[2 2]
[2 3]
[2 4]
[3 1]
[3 2]
[3 3]
[3 4]
[4 1]
[4 2]
[4 3]
[4 4]]
But, I want the output, V1, to include ONLY array rows where w < x (as shown below). I can do this with loops, but I'm hoping for something a little faster.
[[1 2]
[1 3]
[1 4]
[2 3]
[2 4]
[3 4]]
Approach #1
Given ONLY array rows where w < x
, which would be for pairwise combinations, here's one way to achieve the same -
In [81]: r,c = np.nonzero(w[:,None]<x) # or np.less.outer(w,x)
In [82]: np.c_[w[r], x[c]]
Out[82]:
array([[1, 2],
[1, 3],
[1, 4],
[2, 3],
[2, 4],
[3, 4]])
Approach #2
Using a purely masking based approach, it would be -
In [93]: mask = np.less.outer(w,x)
In [94]: s = (len(w), len(x))
In [95]: np.c_[np.broadcast_to(w[:,None], s)[mask], np.broadcast_to(x, s)[mask]]
Out[95]:
array([[1, 2],
[1, 3],
[1, 4],
[2, 3],
[2, 4],
[3, 4]])
Using comparatively larger arrays :
In [8]: np.random.seed(0)
...: w = np.random.randint(0,1000,(1000))
...: x = np.random.randint(0,1000,(1000))
In [9]: %%timeit
...: r,c = np.nonzero(w[:,None]<x)
...: np.c_[w[r], x[c]]
11.3 ms ± 24.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [10]: %%timeit
...: mask = np.less.outer(w,x)
...: s = (len(w), len(x))
...: np.c_[np.broadcast_to(w[:,None], s)[mask], np.broadcast_to(x, s)[mask]]
10.5 ms ± 275 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [11]: import itertools
# @Akshay Sehgal's soln
In [12]: %timeit [i for i in itertools.product(w,x) if i[0]<i[1]]
105 ms ± 1.38 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)