Search code examples
csocketsnetwork-programmingnonblockingmultiplexing

Non blocking sockets when using I/O multiplexing


Should I use non-blocking or blocking TCP sockets when using an I/O multiplexing API like poll(2) or epoll(2)?

Some people suggest using non-blocking sockets here but the I/O multiplexing APIs inform you anyway if there is data to read so what is wrong with a blocking socket here?


Solution

  • If your TCP server is single-threaded and uses blocking I/O, then it's likely that any client that connects to it will be able to deny service to all of the other clients simply by sending only a partial-message, or alternatively by refusing to read any data from its TCP socket after the server sends data. In the former case, the server may block for a long time (perhaps forever) waiting for the entire message to be received from the client; during that time, the server will not be able to respond to other clients. In the latter case, the server will block for a long time (perhaps forever) waiting the client to read some TCP data so that the server-socket's send-buffer can be drained enough to fit some more outgoing data to that client.

    One way to avoid that problem is to set all of the server's sockets to non-blocking I/O mode; that way the server knows it can never get "stuck" inside a recv() or a send() call, and thus can remain responsive to all clients regardless of whether any particular client is behaving nicely, or not. In the non-blocking design, the only place the server ever blocks is inside select() or poll() or similar, because those calls are designed to return whenever any client needs service, rather than blocking on only a single client. (the tradeoff is that with non-blocking I/O your server's buffering/queueing logic will need to be a bit more elaborate, since you can no longer assume that any particular fixed number of bytes will be sent or received during any given send or receive operation)

    The other way to avoid the problem is to make a multi-threaded server; that has the advantage that each client gets its own thread, and therefore a badly-behaved client will block only its own thread and not the threads servicing other clients. The disadvantage is that now your server is multi-threaded, with all of the additional pitfalls that multithreading introduces.

    (and, for completeness, the third approach is simply to ignore the possibility of badly-behaved/poorly-connected clients, and use a single-threaded/blocking model. That works fine for toy examples where clients are expected to be non-hostile, and where the network they are connecting over is reliable, but doesn't work so well in real life)