iam tryin to change values on specific row by check if value of one col is in my dict .
this is my data
data={"col1":[np.nan,3,4,5,9,2,6],
"col2":[4,2,4,6,0,1,5],
"col3":[7,6,0,11,3,6,7],
"col4":[14,11,22,8,6,np.nan,9],
"col5":[0,5,7,3,8,2,9],
"type":["B","A","C","A","B","A","E"],
"number":["one","two","two","one","one","two","two"]}
df=pd.DataFrame.from_dict(data)
my dict is
my_dict={"F":{"col1":2,"col2":44,"col3":0},"B":{"col1":0,"col2":11,"col3":4,"col4":50,"col5":np.nan}}
that what i try
my_dict={"F":{"col1":2,"col2":44,"col3":0},"B":
{"col1":0,"col2":11,"col3":4,"col4":50,"col5":np.nan}}
col_list=df.columns[:-2]
m = df["type"].isin(my_dict)
df.loc[m, col_list] = df.loc[m, col_list].apply(lambda d:
pd.Series.map(df["type"], my_dict))
df
but i get in every cell list instead of one value
i like to get this
data={"col1":[np.nan,0 ,4,5,0,2,6],
"col2":[4 ,11,4,6, 11,1,5],
"col3":[7 ,4 ,0,11,4,6,7],
"col4":[14,50,22,8,50 ,np.nan,9],
"col5":[0 ,0 ,7,3, 0 ,2,9],
"type":["B","A","C","A","B","A","E"],
"number":["one","two","two","one","one","two","two"]}
df=pd.DataFrame.from_dict(data)
df
We can try update
updatedf=pd.DataFrame(my_dict).T.reindex(df.type)
updatedf.index=df.index
df.update(updatedf)
df
Out[21]:
col1 col2 col3 col4 col5 type number
0 0.0 11.0 4.0 50.0 0 B one
1 3.0 2.0 6.0 11.0 5 A two
2 4.0 4.0 0.0 22.0 7 C two
3 5.0 6.0 11.0 8.0 3 A one
4 0.0 11.0 4.0 50.0 8 B one
5 2.0 1.0 6.0 NaN 2 A two
6 6.0 5.0 7.0 9.0 9 E two