Search code examples
pythonsvmfeature-selection

Implementation of Okapi BM25 in python


I am trying to implement Okapi BM25 in python. While I have seen some tutorials how to do it, it seems I am stuck in the process.

So I have collection of documents (and has as columns 'id' and 'text') and queries (and has as columns 'id' and 'text'). I have done the pre-processing steps and I have my documents and queries as a list:

documents = list(train_docs['text'])        #put the documents text to list
queries = list(train_queries_all['text'])   #put the queries text to list

Then for BM25 I do this:

pip install rank_bm25

#calculate BM25

from rank_bm25 import BM25Okapi

bm25 = BM25Okapi(documents)

#compute the score

bm_score = BM25Okapi.get_scores(documents, query=queries)

But it wouldn't work.


Then I tried to do this:

import math
import numpy as np
from multiprocessing import Pool, cpu_count

nd = len(documents) # corpus_size = 3612 (I am not sure if this is necessary)

class BM25:
    def __init__(self, documents, tokenizer=None):
        self.corpus_size = len(documents)
        self.avgdl = 0
        self.doc_freqs = []
        self.idf = {}
        self.doc_len = []
        self.tokenizer = tokenizer

        if tokenizer:
            documents = self._tokenize_corpus(documents)

        nd = self._initialize(documents)
        self._calc_idf(nd)

    def _initialize(self, documents):
        nd = {}  # word -> number of documents with word
        num_doc = 0
        for document in documents:
            self.doc_len.append(len(document))
            num_doc += len(document)

            frequencies = {}
            for word in document:
                if word not in frequencies:
                    frequencies[word] = 0
                frequencies[word] += 1
            self.doc_freqs.append(frequencies)

            for word, freq in frequencies.items():
                if word not in nd:
                    nd[word] = 0
                nd[word] += 1

        self.avgdl = num_doc / self.corpus_size
        return nd

    def _tokenize_corpus(self, documents):
        pool = Pool(cpu_count())
        tokenized_corpus = pool.map(self.tokenizer, documents)
        return tokenized_corpus

    def _calc_idf(self, nd):
        raise NotImplementedError()

    def get_scores(self, queries):
        raise NotImplementedError()

    def get_top_n(self, queries, documents, n=5):

        assert self.corpus_size == len(documents), "The documents given don't match the index corpus!"

        scores = self.get_scores(queries)
        top_n = np.argsort(scores)[::-1][:n]
        return [documents[i] for i in top_n]

class BM25T(BM25):
    def __init__(self, documents, k1=1.5, b=0.75, delta=1):
        # Algorithm specific parameters
        self.k1 = k1
        self.b = b
        self.delta = delta
        super().__init__(documents)

    def _calc_idf(self, nd):
        for word, freq in nd.items():
            idf = math.log((self.corpus_size + 1) / freq)
            self.idf[word] = idf

    def get_scores(self, queries):
        score = np.zeros(self.corpus_size)
        doc_len = np.array(self.doc_len)
        for q in queries:
            q_freq = np.array([(doc.get(q) or 0) for doc in self.doc_freqs])
            score += (self.idf.get(q) or 0) * (self.delta + (q_freq * (self.k1 + 1)) /
                                               (self.k1 * (1 - self.b + self.b * doc_len / self.avgdl) + q_freq))
        return score

and then I try to get the scores:

score = BM25.get_scores(self=documents, queries)

But I get as a meesage: score = BM25.get_scores(self=documents, queries)

SyntaxError: positional argument follows keyword argument


Does anyone has an idea why there is this error? Thank you in advance.


Solution

  • 1 ) tokenize corpus or send tokinizing function to class

    2 ) send only queries to "get_scores" function

    read official example

    from rank_bm25 import BM25Okapi
    
    corpus = [
        "Hello there good man!",
        "It is quite windy in London",
        "How is the weather today?"
    ]
    
    tokenized_corpus = [doc.split(" ") for doc in corpus]
    
    bm25 = BM25Okapi(tokenized_corpus)
    
    query = "windy London"
    tokenized_query = query.split(" ")
    
    doc_scores = bm25.get_scores(tokenized_query)