Search code examples
arraysscipycurve-fittingshapesscipy-optimize

ValueError: shapes (2,210) and (2,210) not aligned: 210 (dim 1) != 2 (dim 0)


I want to fit an intensity distribution function to 2D image data using scipy.optimize.curve_fit and can't locate the error in my code:

# Define doughnut beam intensity distribution function
def doughnut(x, y, x0, y0, A, FWHM):
    '''2D intensity distribution function of doughnut beams (DOI: 10.1126/science.aak9913,
    https://science.sciencemag.org/content/sci/suppl/2016/12/21/science.aak9913.DC1/Balzarotti_SM.pdf).

    Parameters
    ----------
    x, y : float
        X and Y coordinates, orthogonal to beam axis
    x0 : float
        X offset
    y0 : float
        Y offset
    A : float
        Peak intensity
    FWHM : float
        Full width at half maximum
    '''
    return A*np.exp(1)*4*np.log(2)*(np.dot(x+x0,x+x0) + np.dot(y+y0,y+y0))/FWHM**2*np.exp(-4*np.log(2)*(np.dot(x+x0,x+x0) + np.dot(y+y0,y+y0))/FWHM**2)

# Read image file names
pathname = '/home/user/doughnut_beam/'
filenameList = [filename for filename in os.listdir(pathname)
                if filename.endswith('.tif')]

# Open image files, fit doughnut beam intensity distribution function
for filename in filenameList:
    img = Image.open(pathname + filename)

    X, Y = img.size
    xRange = np.arange(1, X+1)
    yRange = np.arange(1, Y+1)
    xGrid, yGrid = np.meshgrid(xRange, yRange)
    xyGrid = np.vstack((xGrid.ravel(), yGrid.ravel()))    # scipy.optimize.curve_fit requires 2xN-array 

    imgArray = np.array(img)
    imgArrayFlat = imgArray.ravel()    # Flatten 2D pixel data into 1D array for scipy.optimize.curve_fit
    
    params_opt, params_cov = curve_fit(doughnut, xyGrid, imgArrayFlat)

This is the output from Jupyter Notebook:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-44-eaa3ebdb6469> in <module>()
     17     imgArrayFlat = imgArray.ravel()    # Flatten 2D pixel data into 1D array for scipy.optimize.curve_fit
     18 
---> 19     params_opt, params_cov = curve_fit(doughnut, xyGrid, imgArrayFlat)

/usr/lib/python3/dist-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
    749         # Remove full_output from kwargs, otherwise we're passing it in twice.
    750         return_full = kwargs.pop('full_output', False)
--> 751         res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
    752         popt, pcov, infodict, errmsg, ier = res
    753         cost = np.sum(infodict['fvec'] ** 2)

/usr/lib/python3/dist-packages/scipy/optimize/minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
    381     if not isinstance(args, tuple):
    382         args = (args,)
--> 383     shape, dtype = _check_func('leastsq', 'func', func, x0, args, n)
    384     m = shape[0]
    385     if n > m:

/usr/lib/python3/dist-packages/scipy/optimize/minpack.py in _check_func(checker, argname, thefunc, x0, args, numinputs, output_shape)
     25 def _check_func(checker, argname, thefunc, x0, args, numinputs,
     26                 output_shape=None):
---> 27     res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
     28     if (output_shape is not None) and (shape(res) != output_shape):
     29         if (output_shape[0] != 1):

/usr/lib/python3/dist-packages/scipy/optimize/minpack.py in func_wrapped(params)
    461     if transform is None:
    462         def func_wrapped(params):
--> 463             return func(xdata, *params) - ydata
    464     elif transform.ndim == 1:
    465         def func_wrapped(params):

<ipython-input-43-3e0adae6fbe0> in doughnut(x, y, x0, y0, A, FWHM)
     17         Full width at half maximum
     18     '''
---> 19     return A*np.exp(1)*4*np.log(2)*(np.dot(x+x0,x+x0) + np.dot(y+y0,y+y0))/FWHM**2*np.exp(-4*np.log(2)*(np.dot(x+x0,x+x0) + np.dot(y+y0,y+y0))/FWHM**2)

ValueError: shapes (2,210) and (2,210) not aligned: 210 (dim 1) != 2 (dim 0)

UPDATE: For some reason, using numpy.dot to square the (offset) variables x+x0 and y+y0 in the function definition does not work. Simply changing to the ** operator results in the correct plot:

# UPDATED: Define doughnut beam intensity distribution function
def doughnut(x, y, x0, y0, A, FWHM):
    '''2D intensity distribution function of doughnut beams (DOI: 10.1126/science.aak9913,
    https://science.sciencemag.org/content/sci/suppl/2016/12/21/science.aak9913.DC1/Balzarotti_SM.pdf).

    Parameters
    ----------
    x, y : float
        X and Y coordinates, orthogonal to beam axis
    x0 : float
        X offset
    y0 : float
        Y offset
    A : float
        Peak intensity
    FWHM : float
        Full width at half maximum
    '''
    return A*np.exp(1)*4*np.log(2)*((x+x0)**2 + (y+y0)**2)/FWHM**2*np.exp(-4*np.log(2)*((x+x0)**2 + (y+y0)**2)/FWHM**2)


fig = plt.figure()
ax = fig.gca(projection='3d')

# Make data
X = np.arange(-10, 10, 0.25)
Y = np.arange(-10, 10, 0.25)
X, Y = np.meshgrid(X, Y)
Z = doughnut(X, Y, x0=0, y0=0, A=1.5, FWHM=7)

# Plot the surface
surf = ax.plot_surface(X, Y, Z)
plt.show()

=> Plot

BUT: Now I'm getting a new error when trying to fit the data:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-61-eaa3ebdb6469> in <module>()
     17     imgArrayFlat = imgArray.ravel()    # Flatten 2D pixel data into 1D array for scipy.optimize.curve_fit
     18 
---> 19     params_opt, params_cov = curve_fit(doughnut, xyGrid, imgArrayFlat)

/usr/lib/python3/dist-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
    749         # Remove full_output from kwargs, otherwise we're passing it in twice.
    750         return_full = kwargs.pop('full_output', False)
--> 751         res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
    752         popt, pcov, infodict, errmsg, ier = res
    753         cost = np.sum(infodict['fvec'] ** 2)

/usr/lib/python3/dist-packages/scipy/optimize/minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
    384     m = shape[0]
    385     if n > m:
--> 386         raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m))
    387     if epsfcn is None:
    388         epsfcn = finfo(dtype).eps

TypeError: Improper input: N=5 must not exceed M=2

Solution

  • This should do the trick. Take a look at the for_fitting function to see how you can package everything in a way curve_fit will accept.

    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.optimize import curve_fit
    
    
    def doughnut(y, x, y0, x0, A, FWHM):
        """2D intensity distribution function of doughnut beams (DOI: 10.1126/science.aak9913,
        https://science.sciencemag.org/content/sci/suppl/2016/12/21/science.aak9913.DC1/Balzarotti_SM.pdf).
    
        Parameters
        ----------
        y, x : float
            X and Y coordinates, orthogonal to beam axis
        y0 : float
            Y offset
        x0 : float
            X offset
        A : float
            Peak intensity
        FWHM : float
            Full width at half maximum
        """
        return (
            A
            * np.e
            * 4
            * np.log(2)
            * ((x + x0) ** 2 + (y + y0) ** 2)
            / FWHM ** 2
            * np.exp(-4 * np.log(2) * ((x + x0) ** 2 + (y + y0) ** 2) / FWHM ** 2)
        )
    
    
    fig0, (ax0, ax1, ax2) = plt.subplots(1, 3, sharex=True, sharey=True)
    
    # Make data
    X = np.arange(-10, 10, 0.25)
    Y = np.arange(-10, 10, 0.25)
    X, Y = np.meshgrid(X, Y)
    
    true_params = (0, 0, 100, 7)
    
    Z = doughnut(Y, X, *true_params)
    
    # Plot the surface
    ax0.matshow(Z, extent=(-10, 10, 10, -10))
    ax0.set_title("Ground Truth")
    
    
    def for_fitting(xdata, y0, x0, A, FWHM):
        yy, xx = xdata
        return doughnut(yy, xx, y0, x0, A, FWHM).ravel()
    
    
    noisy_data = np.random.poisson(Z) + np.random.randn(*Z.shape)
    
    ax1.matshow(noisy_data, extent=(-10, 10, 10, -10))
    ax1.set_title("Noisy Data")
    
    opt_params, cov = curve_fit(for_fitting, (Y, X), noisy_data.ravel(), p0=(0, 0, 10, 1))
    
    print(opt_params)
    
    fit_Z = doughnut(Y, X, *opt_params)
    
    ax2.matshow(fit_Z, extent=(-10, 10, 10, -10))
    ax2.set_title("Fit")
    
    fig0.tight_layout()
    
    plt.show()