I am trying to count the number of unique numbers in a sorted array using binary search. I need to get the edge of the change from one number to the next to count. I was thinking of doing this without using recursion. Is there an iterative approach?
def unique(x):
start = 0
end = len(x)-1
count =0
# This is the current number we are looking for
item = x[start]
while start <= end:
middle = (start + end)//2
if item == x[middle]:
start = middle+1
elif item < x[middle]:
end = middle -1
#when item item greater, change to next number
count+=1
# if the number
return count
unique([1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,5,5,5,5,5,5,5,5,5,5])
Thank you.
Edit: Even if the runtime benefit is negligent from o(n), what is my binary search missing? It's confusing when not looking for an actual item. How can I fix this?
Working code exploiting binary search (returns 3 for given example).
As discussed in comments, complexity is about O(k*log(n))
where k is number of unique items, so this approach works well when k is small compared with n, and might become worse than linear scan in case of k ~ n
def countuniquebs(A):
n = len(A)
t = A[0]
l = 1
count = 0
while l < n - 1:
r = n - 1
while l < r:
m = (r + l) // 2
if A[m] > t:
r = m
else:
l = m + 1
count += 1
if l < n:
t = A[l]
return count
print(countuniquebs([1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,5,5,5,5,5,5,5,5,5,5]))