from functool import lru_cache
@lru_cache
def fibonacci(n):
"""0, 1, 1, 2, 3, 5, 8, 13, 21, 34
"""
if n == 0:
yield 0
elif n == 1:
yield 1
else:
yield next(fibonacci(n - 1)) + next(fibonacci(n - 2))
If i call this function with the @lru_cache
decorator like this:
for x in range(10):
print(next(fibonacci(x)))
i get:
StopIteration
The above exception was the direct cause of the following exception:
RuntimeError: generator raised StopIteration
I have done a bunch of searching and i have no idea how to fix this. Without the decorator, everything works fine.
You can use memoization decorator
Reference: Can I memoize a Python generator? answer by Jasmijn
Code
from itertools import tee
from types import GeneratorType
Tee = tee([], 1)[0].__class__
def memoized(f):
cache={}
def ret(*args):
if args not in cache:
cache[args]=f(*args)
if isinstance(cache[args], (GeneratorType, Tee)):
# the original can't be used any more,
# so we need to change the cache as well
cache[args], r = tee(cache[args])
return r
return cache[args]
return ret
@memoized
def Fibonacci(n):
"""0, 1, 1, 2, 3, 5, 8, 13, 21, 34
"""
if n == 0:
yield 0
elif n == 1:
yield 1
else:
yield next(fibonacci_mem(n - 1)) + next(fibonacci_mem(n - 2))
Timing Test
Summary
Testing n from 1 to 20 orig: original code lru: using lru cache mem: using memorization decoractor
Timing in seconds for 3 runs of each algorithm
Results show lru_cache technique provides the fastest run time (i.e. lower time)
n: 1 orig: 0.000008, lru 0.000006, mem: 0.000015
n: 10 orig: 0.000521, lru 0.000024, mem: 0.000057
n: 15 orig: 0.005718, lru 0.000013, mem: 0.000035
n: 20 orig: 0.110947, lru 0.000014, mem: 0.000040
n: 25 orig: 1.503879, lru 0.000018, mem: 0.000042
Timing Test Code
from itertools import tee
from types import GeneratorType
from functools import lru_cache
Tee = tee([], 1)[0].__class__
def memoized(f):
cache={}
def ret(*args):
if args not in cache:
cache[args]=f(*args)
if isinstance(cache[args], (GeneratorType, Tee)):
# the original can't be used any more,
# so we need to change the cache as well
cache[args], r = tee(cache[args])
return r
return cache[args]
return ret
def fibonacci(n):
"""0, 1, 1, 2, 3, 5, 8, 13, 21, 34
"""
if n == 0:
yield 0
elif n == 1:
yield 1
else:
yield next(fibonacci(n - 1)) + next(fibonacci(n - 2))
@memoized
def fibonacci_mem(n):
"""0, 1, 1, 2, 3, 5, 8, 13, 21, 34
"""
if n == 0:
yield 0
elif n == 1:
yield 1
else:
yield next(fibonacci_mem(n - 1)) + next(fibonacci_mem(n - 2))
@lru_cache
def fibonacci_cache(n):
"""0, 1, 1, 2, 3, 5, 8, 13, 21, 34
"""
if n == 0:
while True:
yield 0
elif n == 1:
while True:
yield 1
else:
result = next(fibonacci_cache(n - 1)) + next(fibonacci_cache(n - 2))
while True:
yield result
from timeit import timeit
cnt = 3
for n in [1, 10, 15, 20, 25]:
t_orig = timeit(lambda:next(fibonacci(n)), number = cnt)
t_mem = timeit(lambda:next(fibonacci_mem(n)), number = cnt)
t_cache = timeit(lambda:next(fibonacci_cache(n)), number = cnt)
print(f'n: {n} orig: {t_orig:.6f}, lru {t_cache:.6f}, mem: {t_mem:.6f}')