I have a large Dataframe below:
The data used as the example here 'education_val.csv' can be found here https://github.com/ENLK/Py-Projects-/blob/master/education_val.csv
import pandas as pd
edu = pd.read_csv('education_val.csv')
del edu['Unnamed: 0']
edu.head(10)
ID Year Education
22445 1991 higher education
29925 1991 No qualifications
76165 1991 No qualifications
223725 1991 Other
280165 1991 intermediate qualifications
333205 1991 No qualifications
387605 1991 higher education
541285 1991 No qualifications
541965 1991 No qualifications
599765 1991 No qualifications
The values in the column Education
are:
edu.Education.value_counts()
intermediate qualifications 153705
higher education 67020
No qualifications 55842
Other 36915
I want to replace the values in the column Education in the following ways:
If an ID
has the value higher education
in a year in the column Education
then all future years for that ID
will also have higher education
in the Education
column.
If an ID
has the value intermediate qualifications
in a year, then all future years for that ID
will have intermediate qualifications
in the corresponding Education
column. However, if the value higher education
occurs in any of the subsequent years for this ID
, then higher education
replaces intermediate qualifications
in the subsequent years, regardless if Other
or No qualifications occur
.
For example in the DataFrame below, ID
22445 has the valuehigher education
in the year 1991
, all subsequent values of Education
for 22445
should be replaced with higher education
in the later years, up to the year 2017
.
edu.loc[edu['ID'] == 22445]
ID Year Education
22445 1991 higher education
22445 1992 higher education
22445 1993 higher education
22445 1994 higher education
22445 1995 higher education
22445 1996 intermediate qualifications
22445 1997 intermediate qualifications
22445 1998 Other
22445 1999 No qualifications
22445 2000 intermediate qualifications
22445 2001 intermediate qualifications
22445 2002 intermediate qualifications
22445 2003 intermediate qualifications
22445 2004 intermediate qualifications
22445 2005 intermediate qualifications
22445 2006 intermediate qualifications
22445 2007 intermediate qualifications
22445 2008 intermediate qualifications
22445 2010 intermediate qualifications
22445 2011 intermediate qualifications
22445 2012 intermediate qualifications
22445 2013 intermediate qualifications
22445 2014 intermediate qualifications
22445 2015 intermediate qualifications
22445 2016 intermediate qualifications
22445 2017 intermediate qualifications
Similarly, ID
1587125 in the Dataframe below has the value intermediate qualifications
in the year 1991
, and changes to higher education
in 1993
. All subsequent values in the column Education
in the future years (from 1993 onwards) for 1587125
should be higher education
.
edu.loc[edu['ID'] == 1587125]
ID Year Education
1587125 1991 intermediate qualifications
1587125 1992 intermediate qualifications
1587125 1993 higher education
1587125 1994 higher education
1587125 1995 higher education
1587125 1996 higher education
1587125 1997 higher education
1587125 1998 higher education
1587125 1999 higher education
1587125 2000 higher education
1587125 2001 higher education
1587125 2002 higher education
1587125 2003 higher education
1587125 2004 Other
1587125 2005 No qualifications
1587125 2006 intermediate qualifications
1587125 2007 intermediate qualifications
1587125 2008 intermediate qualifications
1587125 2010 intermediate qualifications
1587125 2011 higher education
1587125 2012 higher education
1587125 2013 higher education
1587125 2014 higher education
1587125 2015 higher education
1587125 2016 higher education
1587125 2017 higher education
There are 12,057 unique ID
in the data and the column Year
spans from 1991 to 2017. How does one change the values of Education
for all 12, 057 according to the above conditions? I'm not sure how to do this in a uniform way for all unique ID
s. The sample data used as the example here is attached in the Github link above. Many thanks in advance.
You can do it using the categorical data like this:
df = pd.read_csv('https://raw.githubusercontent.com/ENLK/Py-Projects-/master/education_val.csv')
eddtype = pd.CategoricalDtype(['No qualifications',
'Other',
'intermediate qualifications',
'higher education'],
ordered=True)
df['EducationCat'] = df['Education'].str.strip().astype(eddtype)
df['EduMax'] = df.sort_values('Year').groupby('ID')['EducationCat']\
.transform(lambda x: eddtype.categories[x.cat.codes.cummax()] )
It is broken it up explicitly so you can see the data manipulations I am using.
Outputs:
df[df['ID'] == 1587125]
ID Year Education EducationCat EduMax
18 1587125 1991 intermediate qualifications intermediate qualifications intermediate qualifications
12075 1587125 1992 intermediate qualifications intermediate qualifications intermediate qualifications
24132 1587125 1993 higher education higher education higher education
36189 1587125 1994 higher education higher education higher education
48246 1587125 1995 higher education higher education higher education
60303 1587125 1996 higher education higher education higher education
72360 1587125 1997 higher education higher education higher education
84417 1587125 1998 higher education higher education higher education
96474 1587125 1999 higher education higher education higher education
108531 1587125 2000 higher education higher education higher education
120588 1587125 2001 higher education higher education higher education
132645 1587125 2002 higher education higher education higher education
144702 1587125 2003 higher education higher education higher education
156759 1587125 2004 Other Other higher education
168816 1587125 2005 No qualifications No qualifications higher education
180873 1587125 2006 intermediate qualifications intermediate qualifications higher education
192930 1587125 2007 intermediate qualifications intermediate qualifications higher education
204987 1587125 2008 intermediate qualifications intermediate qualifications higher education
217044 1587125 2010 intermediate qualifications intermediate qualifications higher education
229101 1587125 2011 higher education higher education higher education
241158 1587125 2012 higher education higher education higher education
253215 1587125 2013 higher education higher education higher education
265272 1587125 2014 higher education higher education higher education
277329 1587125 2015 higher education higher education higher education
289386 1587125 2016 higher education higher education higher education
301443 1587125 2017 higher education higher education higher education