I'm trying to build a NARX NN with Keras. I'm still not 100% sure on the use of the argument return_sequence=True in the LSTM neurons but, before I can check that, I need to make the code work. When I try to run it I get the following message:
ValueError: Error when checking input: expected lstm_84_input to have 3 dimensions, but got array with shape (6686, 3)
See my code below. The error is raised while running the model.fit command. My data data is of the shape 40101 time steps x 6 features (3 exogenous inputs, 3 system responses).
import numpy as np
import pandas as pd
from sklearn.model_selection import TimeSeriesSplit
import tensorflow as tf
from tensorflow.keras import initializers
# --- main
data = pd.read_excel('example.xlsx',usecols=['wave','wind','current','X','Y','RZ'])
data.plot(subplots=True, figsize=[15,10])
x_data = np.array(data.loc[:,['wave','wind','current']])
y_data = np.array(data.loc[:,['X','Y','RZ']])
timeSeriesCrossValidation = TimeSeriesSplit(n_splits=5)
for train, validation in timeSeriesCrossValidation.split(x_data, y_data):
# create model
model = tf.keras.models.Sequential()
# input layer
model.add(tf.keras.layers.LSTM(units=50,
input_shape=(40101,3),
dropout=0.01,
recurrent_dropout=0.2,
kernel_initializer=initializers.RandomNormal(mean=0,stddev=.5),
bias_initializer=initializers.Zeros(),
return_sequences = True))
# 1st hidden layer
model.add(tf.keras.layers.LSTM(units=50,
dropout=0.01,
recurrent_dropout=0.2,
kernel_initializer=initializers.RandomNormal(mean=0,stddev=.5),
bias_initializer=initializers.Zeros(),
return_sequences = True))
# 2nd hidder layer
model.add(tf.keras.layers.LSTM(units=50,
dropout=0.01,
recurrent_dropout=0.2,
kernel_initializer=initializers.RandomNormal(mean=0,stddev=.5),
bias_initializer=initializers.Zeros(),
return_sequences = False))
# output layer
model.add(tf.keras.layers.Dense(3))
model.compile(loss='mse',optimizer='nadam',metrics=['accuracy'])
model.fit(x_data[train], y_data[train],
verbose=2,
batch_size=None,
epochs=10,
validation_data=(x_data[validation], y_data[validation])
#callbacks=early_stop
)
prediction = model.predict(x_data[validation])
y_validation = y_data[validation]
LSTM layers need input in 3 dimensions:
(n_samples, time_steps, features)
You passed data with this format:
(n_samples, features)
Since you don't have a function to create time steps, the easiest solution would be to change your input to shape:
(40101, 1, 3)
Bogus data:
x_data = np.random.rand(40101, 1, 3)
y_data = np.random.rand(40101, 3)
Also, you shouldn't pass the number of samples in the input_shape
argument of a Keras layer. Just use this:
input_shape=(1, 3)
So here is the corrected code (with bogus data):
import numpy as np
from sklearn.model_selection import TimeSeriesSplit
import tensorflow as tf
from tensorflow.keras import initializers
from tensorflow.keras.layers import *
x_data = np.random.rand(40101, 1, 3)
y_data = np.random.rand(40101, 3)
timeSeriesCrossValidation = TimeSeriesSplit(n_splits=5)
for train, validation in timeSeriesCrossValidation.split(x_data, y_data):
# create model
model = tf.keras.models.Sequential()
# input layer
model.add(LSTM(units=5,
input_shape=(1, 3),
dropout=0.01,
recurrent_dropout=0.2,
kernel_initializer=initializers.RandomNormal(mean=0, stddev=.5),
bias_initializer=initializers.Zeros(),
return_sequences=True))
# 1st hidden layer
model.add(LSTM(units=5,
dropout=0.01,
recurrent_dropout=0.2,
kernel_initializer=initializers.RandomNormal(mean=0, stddev=.5),
bias_initializer=initializers.Zeros(),
return_sequences=True))
# 2nd hidder layer
model.add(LSTM(units=50,
dropout=0.01,
recurrent_dropout=0.2,
kernel_initializer=initializers.RandomNormal(mean=0, stddev=.5),
bias_initializer=initializers.Zeros(),
return_sequences=False))
# output layer
model.add(tf.keras.layers.Dense(3))
model.compile(loss='mse', optimizer='nadam', metrics=['accuracy'])
model.fit(x_data[train], y_data[train],
verbose=2,
batch_size=None,
epochs=1,
validation_data=(x_data[validation], y_data[validation])
# callbacks=early_stop
)
prediction = model.predict(x_data[validation])
y_validation = y_data[validation]
If you want a function to create time steps, use this:
def multivariate_data(dataset, target, start_index, end_index, history_size,
target_size, step, single_step=False):
data = []
labels = []
start_index = start_index + history_size
if end_index is None:
end_index = len(dataset) - target_size
for i in range(start_index, end_index):
indices = range(i-history_size, i, step)
data.append(dataset[indices])
if single_step:
labels.append(target[i+target_size])
else:
labels.append(target[i:i+target_size])
return np.array(data), np.array(labels)
It will give you the right shape, e.g.:
multivariate_data(dataset=np.random.rand(40101, 3),
target=np.random.rand(40101, 3),
0, len(x_data), 5, 0, 1, True)[0].shape
(40096, 5, 3)
You lost 5 data points because at the beginning you can't look 5 steps back in the past.