I have got these dates within text in a pandas dataframe column.
import pandas as pd
sr = pd.Series(['text Mar 20, 2009 text', 'text March 20, 2009 text', 'text 20 Mar. 2009 text', 'text Sep 2010 text','text Mar 20th, 2009 text ','text Mar 21st, 2009 text'])
when I use regex, I get this.
a=sr.str.extractall(r'((?P<day>(?:\d{2} )?(?P<month>(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z,.]*)) (?:\d{2}[-/th|st|nd|rd\s]*[,.]* )?(?P<year>\d{4}))')
all day month year
match
0 0 Mar 20, 2009 Mar Mar 2009
1 0 March 20, 2009 March March 2009
2 0 20 Mar. 2009 20 Mar. Mar. 2009
3 0 Sep 2010 Sep Sep 2010
4 0 Mar 20th, 2009 Mar Mar 2009
5 0 Mar 21st, 2009 Mar Mar 2009
How can I get the dates (20,20th,21st...) into the day column?
One solution with pandas (why reinvent the wheel?):
import pandas as pd
df = sr.to_frame(name='all')
df['all'] = pd.to_datetime(df['all'])
df['day'] = df['all'].dt.day
df['month'] = df['all'].dt.strftime('%b')
df['year'] = df['all'].dt.year
Output:
all day month year
0 2009-03-20 20 Mar 2009
1 2009-03-20 20 Mar 2009
2 2009-03-20 20 Mar 2009
3 2010-09-01 1 Sep 2010
4 2009-03-20 20 Mar 2009
5 2009-03-21 21 Mar 2009