actually I am trying to build a LSTM-Model in Keras and Tensorflow. My dataset has about 3200 items with 4 features and 3 labels.
X Shape: (3200, 4)
Y Shape: (3200, 3)
If I want about 5 times steps, so do i have to reshape like that:
n_time_steps= 5
n_features = 4
X_train = X_train.reshape((-1, n_time_steps, n_features))
so I get these shapes:
X Shape: (640, 5, 4)
Y Shape: (3200, 3)
I am kinda confused, because 640 =! 3200 data points... but the model compiles and fits without any error. But the acc and loss are insane.
When I try to reshape Y_train too Y Shape: (640, 5, 3)
throws
Incompatible shapes: [10,3] vs. [10,5,3] [[node sub (defined at :12) ]] [Op:__inference_train_function_74818 Function call stack: train_function
Here is my model
opt = 'adam'
model = keras.Sequential()
model.add(layers.LSTM(128, input_shape=(n_time_steps,4)))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(3 ,activation="sigmoid"))
model.compile(optimizer=opt,loss=hn_multilabel_loss,metrics=['accuracy','mae'])
model.summary()
history = model.fit(X_train, Y_train,batch_size = 10, epochs=10, validation_split = 0.1)
Anyone has an idea how to create a LSTM with 5 time steps and 4 features ? What is the right input and output shape?
Thanks guys!
You can use this function to transform a 2D dataset to a dataset with a customizable number of time steps:
def multivariate_data(dataset, target, start_index, end_index, history_size,
target_size, step, single_step=False):
data = []
labels = []
start_index = start_index + history_size
if end_index is None:
end_index = len(dataset) - target_size
for i in range(start_index, end_index):
indices = range(i-history_size, i, step)
data.append(dataset[indices])
if single_step:
labels.append(target[i+target_size])
else:
labels.append(target[i:i+target_size])
return np.array(data), np.array(labels)
I did it successfully with your task (I simplified it a little):
import tensorflow as tf
import numpy as np
from tensorflow.keras import layers
X_train = np.random.rand(3200, 4)
y_train = np.random.randint(0, 2, (3200, 3))
def multivariate_data(dataset, target, start_index, end_index, history_size,
target_size, step, single_step=False):
data, labels = [], []
start_index = start_index + history_size
if end_index is None:
end_index = len(dataset) - target_size
for i in range(start_index, end_index):
indices = range(i-history_size, i, step)
data.append(dataset[indices])
if single_step:
labels.append(target[i+target_size])
else:
labels.append(target[i:i+target_size])
return np.array(data), np.array(labels)
X_train, y_train = multivariate_data(X_train, y_train, 0, 3200, 5, 0, 1, True)
n_time_steps, n_features = 5, 4
model = tf.keras.Sequential()
model.add(layers.LSTM(128, input_shape=(n_time_steps,4)))
model.add(layers.Dense(3))
model.compile(optimizer='adam',loss='mae')
history = model.fit(X_train, y_train, batch_size = 10, epochs=1)
Output:
10/3195 [..............................] - ETA: 16:12 - loss: 0.3244
120/3195 [>.............................] - ETA: 1:19 - loss: 0.2725
230/3195 [=>............................] - ETA: 40s - loss: 0.2536
330/3195 [==>...........................] - ETA: 27s - loss: 0.2545
440/3195 [===>..........................] - ETA: 20s - loss: 0.2597