As a learning exercise for myself, I am trying to estimate the regression parameters using the MLE method in Python.
From what I have gathered, the log-likelihood function boils down to maximizing the following:
So I need to take partial derivatives with respect to the intercept and the slope, setting each to zero, and this should give me the coefficients.
I have been trying to approach this using sympy as follows:
from sympy import *
b = Symbol('b')# beta1
a = Symbol('a')# intercept
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
i = symbols('i', cls=Idx)
x_values = [2,3,2]
y_values = [1,2,3]
n = len(x_values)-1
function = summation((Indexed('y',i) - a+b*Indexed('x',i))**2, (i, 0, n))
partial_intercept = function.diff(a)
print(partial_intercept)
# 6*a - 2*b*x[0] - 2*b*x[1] - 2*b*x[2] - 2*y[0] - 2*y[1] - 2*y[2]
intercept_f = lambdify([x, y], partial_intercept)
inter = solve(intercept_f(x_values, y_values), a)
print(inter)
# [7*b/3 + 2]
I would have expected a single value for the slope, such that the 'b' variable is gone. However, I see that this wouldn't be possible given that the variable b is still there in my derivative equation.
Does anyone have any advice on where I am going wrong?
Thanks!
Edit : Fixed a typo in the codeblock
The expression 7*b/2 + 2
at the end tell you that we have to satisfies a = 7*b/2 + 2
, it depends on the quantity of b
.
You should solve for both a
and b
as a system simultaneously.
In the following code, I find the relationship that a
and b
has to satisfies and solve them simultaneously.
from sympy import *
b = Symbol('b')# beta1
a = Symbol('a')# intercept
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
i = symbols('i', cls=Idx)
x_values = [2,3,2]
y_values = [1,2,3]
n = len(x_values)-1
function = summation((Indexed('y',i) - a+b*Indexed('x',i))**2, (i, 0, n))
partial_intercept = function.diff(a)
print(partial_intercept)
# 6*a - 2*b*x[0] - 2*b*x[1] - 2*b*x[2] - 2*y[0] - 2*y[1] - 2*y[2]
intercept_f = lambdify([x, y], partial_intercept)
inter = solve(intercept_f(x_values, y_values), a)
print(inter)
#[7*b/3 + 2]
partial_gradient = function.diff(b)
print(partial_gradient)
# 6*a - 2*b*x[0] - 2*b*x[1] - 2*b*x[2] - 2*y[0] - 2*y[1] - 2*y[2]
intercept_f = lambdify([x, y], partial_gradient)
inter2 = solve(intercept_f(x_values, y_values), b)
print(inter2)
ans = solve([a-inter[0], b-inter2[0]])
print(ans)
Here are the outputs:
6*a - 2*b*x[0] - 2*b*x[1] - 2*b*x[2] - 2*y[0] - 2*y[1] - 2*y[2]
[7*b/3 + 2]
2*(-a + b*x[0] + y[0])*x[0] + 2*(-a + b*x[1] + y[1])*x[1] + 2*(-a + b*x[2] + y[2])*x[2]
[7*a/17 - 14/17]
{a: 2, b: 0}
a
should be set to be 2
and b
should be set to be 0
.