Search code examples
pythonpandasdictionarymatplotlibseaborn

How to make a grouped violinplot from dictionary


I'd like to make a violin plot from a dictionary. Here is an example of what my dictionary looks like, though my actual one has many more patients and many more values.

paired_patients={'Patient_1': {'n':[1, nan, 3, 4], 't': [5,6,7,8]},
                 'Patient_2': {'n':[9,10,11,12], 't':[14,nan,16,17]},
                 'Patient_3': {'n':[1.5,nan,3.5,4.5], 't':[5.5,6.5,7.5,8.5]}}

For each patient, I'd like there to be a set of two violin plots side-by-side, one 'n' and one for 't'. I'd like all six violin plots to be on the same graph, sharing the y axis.

I am trying to use matplotlib violinplot, but I am not sure how to enter my dictionary in the 'dataset' option, nor how to group the 'n' and 't' by patient.


Solution

  • Answer

    I suggest to save your data in a pandas.DataFrame.
    First of all, I loop over patients to save the data in the dataframe:

    df = pd.DataFrame(columns = ['Patient', 'n', 't'])
    
    for key, value in paired_patients.items():
        patient_df = pd.DataFrame({'Patient': [key]*len(value['n']),
                                   'n': value['n'],
                                   't': value['t']})
        df = df.append(patient_df, ignore_index = True)
    

    So I get:

          Patient     n    t
    0   Patient_1   1.0    5
    1   Patient_1   NaN    6
    2   Patient_1   3.0    7
    3   Patient_1   4.0    8
    4   Patient_2   9.0   14
    5   Patient_2  10.0  NaN
    6   Patient_2  11.0   16
    7   Patient_2  12.0   17
    8   Patient_3   1.5  5.5
    9   Patient_3   NaN  6.5
    10  Patient_3   3.5  7.5
    11  Patient_3   4.5  8.5
    

    Then I need to stack 'n' and 't' columns through pd.melt:

    df = pd.melt(frame = df,
                 id_vars = 'Patient',
                 value_vars = ['n', 't'],
                 var_name = 'type',
                 value_name = 'value')
    

    In this way the dataframe in reshaped as follows:

          Patient type value
    0   Patient_1    n     1
    1   Patient_1    n   NaN
    2   Patient_1    n     3
    3   Patient_1    n     4
    4   Patient_2    n     9
    5   Patient_2    n    10
    6   Patient_2    n    11
    7   Patient_2    n    12
    8   Patient_3    n   1.5
    9   Patient_3    n   NaN
    10  Patient_3    n   3.5
    11  Patient_3    n   4.5
    12  Patient_1    t     5
    13  Patient_1    t     6
    14  Patient_1    t     7
    15  Patient_1    t     8
    16  Patient_2    t    14
    17  Patient_2    t   NaN
    18  Patient_2    t    16
    19  Patient_2    t    17
    20  Patient_3    t   5.5
    21  Patient_3    t   6.5
    22  Patient_3    t   7.5
    23  Patient_3    t   8.5
    

    Finally you may need to convert 'value' column type to float:

    df['value'] = df['value'].astype(float)
    

    Now it is possible to plot these data with the seaborn.violinplot:

    fig, ax = plt.subplots()
    
    sns.violinplot(ax = ax,
                   data = df,
                   x = 'Patient',
                   y = 'value',
                   hue = 'type',
                   split = True)
    
    plt.show()
    

    Complete Code

    import matplotlib.pyplot as plt
    import seaborn as sns
    import pandas as pd
    from math import nan
    
    paired_patients = {'Patient_1': {'n': [1, nan, 3, 4], 't': [5, 6, 7, 8]},
                       'Patient_2': {'n': [9, 10, 11, 12], 't': [14, nan, 16, 17]},
                       'Patient_3': {'n': [1.5, nan, 3.5, 4.5], 't': [5.5, 6.5, 7.5, 8.5]}}
    
    df = pd.DataFrame(columns = ['Patient', 'n', 't'])
    
    for key, value in paired_patients.items():
        patient_df = pd.DataFrame({'Patient': [key]*len(value['n']),
                                   'n': value['n'],
                                   't': value['t']})
        df = df.append(patient_df, ignore_index = True)
    
    df = pd.melt(frame = df,
                 id_vars = 'Patient',
                 value_vars = ['n', 't'],
                 var_name = 'type',
                 value_name = 'value')
    
    df['value'] = df['value'].astype(float)
    
    fig, ax = plt.subplots()
    
    sns.violinplot(ax = ax,
                   data = df,
                   x = 'Patient',
                   y = 'value',
                   hue = 'type',
                   split = True)
    
    plt.show()
    

    Plot

    enter image description here


    Note

    If you have many patients, you will have too many data along x axis, so I suggest you to set split = True in order to save some space.
    Otherwise, if you set split = False, you will get:

    enter image description here