I have a basic dataframe which is a result of a gruopby from unclean data:
df:
Name1 Value1 Value2
A 10 30
B 40 50
I have created a list as follows:
Segment_list = df['Name1'].unique()
Segment_list
array(['A', 'B'], dtype=object)
Now i want to traverse the list and find the amount in Value1 for each iteration so i am usinig:
for Segment_list in enumerate(Segment_list):
print(df['Value1'])
But I getting both values instead of one by one. I just need one value for one iteration. Is this possible?
Expected output:
10
40
pandas.DataFrame.groupby
to get the values for each group.for-loop
with pandas is an indication that it's probably not being done correctly or efficiently.import pandas as pd
import numpy as np
import random
np.random.seed(365)
random.seed(365)
rows = 25
data = {'n': [random.choice(['A', 'B', 'C']) for _ in range(rows)],
'v1': np.random.randint(40, size=(rows)),
'v2': np.random.randint(40, size=(rows))}
df = pd.DataFrame(data)
# groupby n
for g, d in df.groupby('n'):
# print(g) # use or not, as needed
print(d.v1.values[0]) # selects the first value of each group and prints it
[out]: # first value of each group
5
33
18
dfg = df.groupby(['n'], as_index=False).agg({'v1': list})
# display(dfg)
n v1
0 A [5, 26, 39, 39, 10, 12, 13, 11, 28]
1 B [33, 34, 28, 31, 27, 24, 36, 6]
2 C [18, 27, 9, 36, 35, 30, 3, 0]
groupby
, and it will only ever have one value in the column for each group.dfg = df.groupby('n', as_index=False).sum()
# display(dfg)
n v1 v2
0 A 183 163
1 B 219 188
2 C 158 189
# print the value for each group in v1
for v in dfg.v1.to_list():
print(v)
[out]:
183
219
158
dfg = df.groupby('n', as_index=False).sum()
for col in dfg.columns[1:]: # selects all columns after n
for v in dfg[col].to_list():
print(v)
[out]:
183
219
158
163
188
189