Currently I am working speaker Diarization on python where I am using pyannote for embedding. My embedding function looks like this:
import torch
import librosa
from pyannote.core import Segment
def embeddings_(audio_path,resegmented,range):
model_emb = torch.hub.load('pyannote/pyannote-audio', 'emb')
embedding = model_emb({'audio': audio_path})
for window, emb in embedding:
assert isinstance(window, Segment)
assert isinstance(emb, np.ndarray)
y, sr = librosa.load(audio_path)
myDict={}
myDict['audio'] = audio_path
myDict['duration'] = len(y)/sr
data=[]
for i in resegmented:
excerpt = Segment(start=i[0], end=i[0]+range)
emb = model_emb.crop(myDict,excerpt)
data.append(emb.T)
data= np.asarray(data)
return data.reshape(len(data),512)
When I run
embeddings = embeddings_(audiofile,resegmented,2)
I get this error:
ParameterError: Mono data must have shape (samples,). Received shape=(1, 87488721)
I got the same error too, but i have found a workaround. For me, the error got triggered in "pyannote/audio/features/utils.py", when it is trying to resample the audio using this line y = librosa.core.resample(y.T, sample_rate, self.sample_rate).T
This is my workaround
def get_features(self, y, sample_rate):
# convert to mono
if self.mono:
y = np.mean(y, axis=1, keepdims=True)
y = np.squeeze(y) # Add this line
# resample if sample rates mismatch
if (self.sample_rate is not None) and (self.sample_rate != sample_rate):
y = librosa.core.resample(y.T, sample_rate, self.sample_rate).T
sample_rate = self.sample_rate
# augment data
if self.augmentation is not None:
y = self.augmentation(y, sample_rate)
# TODO: how time consuming is this thing (needs profiling...)
if len(y.shape) == 1: # Add this line
y = y[:,np.newaxis] # Add this line
try:
valid = valid_audio(y[:, 0], mono=True)
except ParameterError as e:
msg = f"Something went wrong when augmenting waveform."
raise ValueError(msg)
return y
Use np.squeeze
on y
for librosa.core.resample
, then use y[:,np.newaxis]
to change its shape to (samples, 1) for valid = valid_audio(y[:, 0], mono=True)