I'm trying to implement a CRC-CCITT calculator in VHDL. I was able to initially do that; however, I recently found out that data is delivered starting at the least-significant byte. In my code, data is transmitted 7 bytes at a time through a frame. So let's say we have the following data: 123456789
in ASCII or 313233343536373839
in hex. The data would be transmitted as such (with the following CRC):
-- First frame of data
RxFrame.Data <= (
1 => x"39", -- LSB
2 => x"38",
3 => x"37",
4 => x"36",
5 => x"35",
6 => x"34",
7 => x"33"
);
-- Second/last frame of data
RxFrame.Data <= (
1 => x"32",
2 => x"31", -- MSB
3 => xx, -- "xx" means irrelevant data, not part of CRC calculation.
4 => xx, -- This occurs only in the last frame, when it specified in
5 => xx, -- byte 0 which bytes contain data
6 => xx,
7 => xx
);
-- Calculated CRC should be 0x31C3
Another example with data 0x4376669A1CFC048321313233343536373839
and its correct CRC is shown below:
-- First incoming frame of data
RxFrame.Data <= (
1 => x"39", -- LSB
2 => x"38",
3 => x"37",
4 => x"36",
5 => x"35",
6 => x"34",
7 => x"33"
);
-- Second incoming frame of data
RxFrame.Data <= (
1 => x"32",
2 => x"31",
3 => x"21",
4 => x"83",
5 => x"04",
6 => x"FC",
7 => x"1C"
);
-- Third/last incoming frame of data
RxFrame.Data <= (
1 => x"9A",
2 => x"66",
3 => x"76",
4 => x"43", -- MSB
5 => xx, -- Irrelevant data, specified in byte 0
6 => xx,
7 => xx
);
-- Calculated CRC should be 0x2848
Is there a concept I'm missing? Is there a way to calculate the CRC with the data being received in reverse order? I am implementing this for CANopen SDO block protocols. Thanks!
CRC calculation algorithm to verify SDO block transfer from CANopen standard
Example code to generate a CRC16 with the bytes read in reverse (last byte first), using a function to do a carryless multiply modulo the CRC polynomial. An explanation follows.
#include <stdio.h>
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
#define POLY (0x1021u)
/* carryless multiply modulo crc polynomial */
uint16_t MpyModPoly(uint16_t a, uint16_t b) /* (a*b)%poly */
{
uint16_t pd = 0;
uint16_t i;
for(i = 0; i < 16; i++){
/* assumes twos complement */
pd = (pd<<1)^((0-(pd>>15))&POLY);
pd ^= (0-(b>>15))&a;
b <<= 1;
}
return pd;
}
/* generate crc in reverse byte order */
uint16_t Crc16R(uint8_t * b, size_t sz)
{
uint8_t *e = b + sz; /* end of bfr ptr */
uint16_t crc = 0u; /* crc */
uint16_t pdm = 0x100u; /* padding multiplier */
while(e > b){ /* generate crc */
pdm = MpyModPoly(0x100, pdm);
crc ^= MpyModPoly( *--e, pdm);
}
return(crc);
}
/* msg will be processed in reverse order */
static uint8_t msg[] = {0x43,0x76,0x66,0x9A,0x1C,0xFC,0x04,0x83,
0x21,0x31,0x32,0x33,0x34,0x35,0x36,0x37,
0x38,0x39};
int main()
{
uint16_t crc;
crc = Crc16R(msg, sizeof(msg));
printf("%04x\n", crc);
return 0;
}
Example code using X86 xmm pclmulqdq and psrlq, to emulate a 16 bit by 16 bit hardware (VHDL) carryless multiply:
/* __m128i is an intrinsic for X86 128 bit xmm register */
static __m128i poly = {.m128i_u32[0] = 0x00011021u}; /* poly */
static __m128i invpoly = {.m128i_u32[0] = 0x00008898u}; /* 2^31 / poly */
/* carryless multiply modulo crc polynomial */
/* using xmm pclmulqdq and psrlq */
uint16_t MpyModPoly(uint16_t a, uint16_t b)
{
__m128i ma, mb, mp, mt;
ma.m128i_u64[0] = a;
mb.m128i_u64[0] = b;
mp = _mm_clmulepi64_si128(ma, mb, 0x00); /* mp = a*b */
mt = _mm_srli_epi64(mp, 16); /* mt = mp>>16 */
mt = _mm_clmulepi64_si128(mt, invpoly, 0x00); /* mt = mt*ipoly */
mt = _mm_srli_epi64(mt, 15); /* mt = mt>>15 = (a*b)/poly */
mt = _mm_clmulepi64_si128(mt, poly, 0x00); /* mt = mt*poly */
return mp.m128i_u16[0] ^ mt.m128i_u16[0]; /* ret mp^mt */
}
/* external code to generate invpoly */
#define POLY (0x11021u)
static __m128i invpoly; /* 2^31 / poly */
void GenMPoly(void) /* generate __m12i8 invpoly */
{
uint32_t N = 0x10000u; /* numerator = x^16 */
uint32_t Q = 0; /* quotient = 0 */
for(size_t i = 0; i <= 15; i++){ /* 31 - 16 = 15 */
Q <<= 1;
if(N&0x10000u){
Q |= 1;
N ^= POLY;
}
N <<= 1;
}
invpoly.m128i_u16[0] = Q;
}
Explanation: consider the data as separate strings of ever increasing length, padded with zeroes at the end. For the first few bytes of your example, the logic would calculate
CRC = CRC16({39})
CRC ^= CRC16({38 00})
CRC ^= CRC16({37 00 00})
CRC ^= CRC16({36 00 00 00})
...
To speed up this calculation, rather than actually pad with n zero bytes, you can do a carryless multiply of a CRC by 2^{n·8} modulo POLY, where POLY is the 17 bit polynomial used for CRC16:
CRC = CRC16({39})
CRC ^= (CRC16({38}) · (2^08 % POLY)) % POLY
CRC ^= (CRC16({37}) · (2^10 % POLY)) % POLY
CRC ^= (CRC16({36}) · (2^18 % POLY)) % POLY
...
A carryless multiply modulo POLY is equivalent to what CRC16 does, so this translates into pseudo code (all values in hex, 2^8 = 100)
CRC = 0
PDM = 100 ;padding multiplier
PDM = (100 · PDM) % POLY ;main loop (2 lines per byte)
CRC ^= ( 39 · PDM) % POLY
PDM = (100 · PDM) % POLY
CRC ^= ( 38 · PDM) % POLY
PDM = (100 · PDM) % POLY
CRC ^= ( 37 · PDM) % POLY
PDM = (100 · PDM) % POLY
CRC ^= ( 36 · PDM) % POLY
...
Implementing (A · B) % POLY is based on binary math:
(A · B) % POLY = (A · B) ^ (((A · B) / POLY) · POLY)
Where multiply is carryless (XOR instead of add) and divide is borrowless (XOR instead of subtract). Since the divide is borrowless, and most significant term of POLY is x^16, the quotient
Q = (A · B) / POLY
only depends on the upper 16 bits of (A · B). Dividing by POLY uses multiplication by the 16 bit constant IPOLY = (2^31)/POLY followed by a right shift:
Q = (A · B) / POLY = (((A · B) >> 16) · IPOLY) >> 15
The process uses a 16 bit by 16 bit carryless multiply, producing a 31 bit product.
POLY = 0x11021u ; CRC polynomial (17 bit)
IPOLY = 0x08898u ; 2^31 / POLY
; generated by external software
MpyModPoly(A, B)
{
MP = A · B ; MP = A · B
MT = MP >> 16 ; MT = MP >> 16
MT = MT · IPOLY ; MT = MT · IPOLY
MT = MT >> 15 ; MT = (A · B) / POLY
MT = MT · POLY ; MT = ((A · B) / POLY) * POLY
return MP xor MT ; (A·B) ^ (((A · B) / POLY) · POLY)
}
A hardware based carryless multiply would look something like this 4 bit · 4 bit example.
p[] = [a3 a2 a1 a0] · [b3 b2 b1 b0]
p[] is a 7 bit product generated with 7 parallel circuits.
The time for multiply would be worst case propagation time for p3.
p6 = a3&b3
p5 = a3&b2 ^ a2&b3
p4 = a3&b1 ^ a2&b2 ^ a1&b3
p3 = a3&b0 ^ a2&b1 ^ a1&b2 ^ a0&b3
p2 = a2&b0 ^ a1&b1 ^ a0&b2
p1 = a1&b0 ^ a0&b1
p0 = a0&b0
If the xor gates available only have 2 bit inputs, the logic can
be split up. For example:
p3 = (a3&b0 ^ a2&b1) ^ (a1&b2 ^ a0&b3)
I don't know if your VHDL toolset includes a library for carryless multiply. For a 16 bit by 16 bit multiply resulting in a 31 bit product (p30 to p00), p15 has 16 outputs from the 16 ands (in parallel), which could be xor'ed using a tree like structure, 8 xors in parallel feeding into 4 xors in parallel feeding into 2 xor's in parallel into a single xor. So the propagation time would be 1 and and 4 xor propagation times.