Suppose I want to make a subplot like this in which each facet has its own y scale:
import plotly.express as px
fig = px.scatter(px.data.iris(), x='sepal_length', y='sepal_width', facet_col='species')
def update(y):
y.update(matches=None)
y.showticklabels=True
fig.for_each_yaxis(update)
Now suppose I want to add some annotations, and the position is going to vary according to the faceted variable, and I have this in a dataframe:
If I was using plotnine/ggplot I could do it like this:
ggplot(df_iris, aes(x='sepal_length', y='sepal_width')) + geom_point() + facet_wrap("~species", scales="free_y") + geom_text(aes(x='x', y='y', label='label'), data=df_text)
Is it possible to do this in plotly? I got pretty bogged down mucking around with subplots and annotations, I know you can add annotations to a subplot, but you have to know the row and column number in order to do that, and I'm not sure how I can map the facet variable (species) to the subplot row/column indexes.
Thanks :)
I'm not sure if this is the best way to do it but you can try the following
import plotly.express as px
import pandas as pd
df_text = pd.DataFrame({"species":["setosa", "versicolor", "virginica"],
"x": [7, 7, 5],
"y": [3, 2, 3.5],
"label":["label1", "label2", "label3"]})
fig = px.scatter(px.data.iris(),
x='sepal_length',
y='sepal_width',
facet_col='species')
# Here are your annotations
data = px.scatter(df_text,
x="x",
y="y",
text="label",
facet_col='species')\
.update_traces(mode="text")["data"]
def update(y):
y.update(matches=None)
y.showticklabels=True
fig.for_each_yaxis(update)
for trace in data:
fig.add_trace(trace)
fig.show()