I've come across a bunch of other weighted mean pandas questions but none of them seem to do what I'm trying to do. I have the following df:
Primary_Key Team Quantity Value 1 Value 2
0 A Blue 10 20 10
1 B Red 5 19 30
2 C Green 8 13 29
3 D Blue 12 24 18
4 E Red 15 25 19
5 F Green 12 18 23
I'm trying to calculate the weighted average of each of the values for each team, so I'd get the following result_df:
Team Quantity Value 1 Value 2
0 Blue 10 20*10/22 10*10/22
1 Red 5 19*5/20 30*5/20
2 Green 8 13*8/20 29*8/20
3 Blue 12 24*12/22 18*12/22
4 Red 15 25*15/20 19*15/20
5 Green 12 18*12/20 23*12/20
where each entry under the Value columns have had the following calculation done on them:
weighted_mean = value * (quantity/team's total quantity)
I'm thinking I'd have to use the .apply(lambda x:...) function somehow but I don't know how I would easily get the values for the team's total quantity. I also came across the numpy.average function but I don't think it would be useful here.
Any help would be much appreciated!
Breaking down into steps:
import pandas as pd
import numpy as np
df = pd.DataFrame(data={
'Primary_Key': list('ABCDEF'),
'Team': ['Blue', 'Red', 'Green', 'Blue', 'Red', 'Green'],
'Quantity': [10,5,8,12,15,12],
'v1': [20,19,13, 24,25,18],
'v2': [10,30,29,18,19,23]})
df['GroupQuantity'] = df.groupby('Team')['Quantity'].transform(np.sum)
df['v1'] = df['Quantity'] * df['v1'] / df['GroupQuantity']
df['v2'] = df['Quantity'] * df['v2'] / df['GroupQuantity']
df
Primary_Key Team Quantity v1 v2
0 A Blue 10 9.090909 4.545455
1 B Red 5 4.750000 7.500000
2 C Green 8 5.200000 11.600000
3 D Blue 12 13.090909 9.818182
4 E Red 15 18.750000 14.250000
5 F Green 12 10.800000 13.800000
Now if you are looking for a one liner, you can do:
df[['v1', 'v2']] = df[['v1', 'v2']] * df['Quantity'].to_numpy()[:,None] / df.groupby('Team')['Quantity'].transform(np.sum).to_numpy()[:,None]
df
Primary_Key Team Quantity v1 v2
0 A Blue 10 9.090909 4.545455
1 B Red 5 4.750000 7.500000
2 C Green 8 5.200000 11.600000
3 D Blue 12 13.090909 9.818182
4 E Red 15 18.750000 14.250000
5 F Green 12 10.800000 13.800000