I'm using dcast to transpose the following table
date event user_id
25-07-2020 Create 3455
25-07-2020 Visit 3567
25-07-2020 Visit 3567
25-07-2020 Add 3567
25-07-2020 Add 3678
25-07-2020 Add 3678
25-07-2020 Create 3567
24-07-2020 Edit 3871
I'm using dcast to transpose to have my events as columns and count user_id
dae_summ <- dcast(ahoy_events, date ~ event, value.var="user_id")
But I'm not getting unique user id's. its counting the same user_id multiple times. What can I do to get one user_id counted only one time for the same date and event.
We could use uniqueN
from data.table
library(data.table)
dcast(setDT(ahoy_events), date ~ event, fun.aggregate = uniqueN)
# date Add Create Edit Visit
#1: 24-07-2020 0 0 1 0
#2: 25-07-2020 2 2 0 1
Or using pivot_wider
from tidyr
with values_fn
specified as n_distinct
library(tidyr)
library(dplyr)
ahoy_events %>%
pivot_wider(names_from = event, values_from = user_id,
values_fn = list(user_id = n_distinct), values_fill = list(user_id = 0))
# A tibble: 2 x 5
# date Create Visit Add Edit
# <chr> <int> <int> <int> <int>
#1 25-07-2020 2 1 2 0
#2 24-07-2020 0 0 0 1
ahoy_events <- structure(list(date = c("25-07-2020", "25-07-2020", "25-07-2020",
"25-07-2020", "25-07-2020", "25-07-2020", "25-07-2020", "24-07-2020"
), event = c("Create", "Visit", "Visit", "Add", "Add", "Add",
"Create", "Edit"), user_id = c(3455L, 3567L, 3567L, 3567L, 3678L,
3678L, 3567L, 3871L)), class = "data.frame", row.names = c(NA,
-8L))