I have the following type of data.
InvoiceNo InvoiceDate InvoiceType PriceType SellManNo CustomerNo PaymentDate Total
91 1/15/2019 4 2 1 700 1/15/2019 1140.55
92 1/15/2019 4 2 1 13 1/15/2019 201
93 1/15/2019 4 2 1 675 1/15/2019 500
94 1/15/2019 4 2 1 456 1/15/2019 48
95 1/15/2019 4 2 1 709 1/15/2019 276
96 1/15/2019 4 2 1 98 2/14/2019 299
97 1/15/2019 1 2 1 1 1/15/2019 45.66
98 1/15/2019 4 2 1 478 1/15/2019 2.88
This is what I tried:
from sklearn.preprocessing import MinMaxScaler
scaling=MinMaxScaler()
df_total=df[['Total']]
df_total=scaling.fit_transform(df_total)
df_total
And I got the error.
only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices
All you should need is:
df['Total'] /= max(df['Total'])