I have timeseries data (euro/usd). I want to create new column with conditions that
(It easier to read in my code to understand the conditions.) if minimum of 3 previous high prices less than or equal to the current price then it will be 'BUY_SIGNAL' and if maximum of 3 previous low prices higher than or equal to the current price then it will be 'SELL_SIGNAL'.
Here is my table looks like
DATE OPEN HIGH LOW CLOSE
0 1990.09.28 1.25260 1.25430 1.24680 1.24890
1 1990.10.01 1.25170 1.26500 1.25170 1.25480
2 1990.10.02 1.25520 1.26390 1.25240 1.26330
3 1990.10.03 1.26350 1.27000 1.26030 1.26840
4 1990.10.04 1.26810 1.27750 1.26710 1.27590
and this is my code (I try to create 2 functions and it does not work)
def target_label(df):
if df['HIGH']>=[df['HIGH'].shift(1),df['HIGH'].shift(2),df['HIGH'].shift(3)].min(axis=1):
return 'BUY_SIGNAL'
if df['LOW']>=[df['LOW'].shift(1),df['LOW'].shift(2),df['LOW'].shift(3)].min(axis=1):
return 'SELL_SIGNAL'
else:
return 'NO_SIGNAL'
def target_label(df):
if df['HIGH']>=df[['HIGH1','HIGH2','HIGH3'].min(axis=1):
return 'BUY_SIGNAL'
if df['LOW']<=df[['LOW1','LOW2','LOW3']].max(axis=1):
return 'SELL_SIGNAL'
else:
return 'NO_SIGNAL'
d_df.apply (lambda df: target_label(df), axis=1)
You can use rolling(3).min()
to get the minimum of previous 3 rows. The same would work for other functions like max
, mean
, etc. Something like the following:
df['signal'] = np.where(
df['HIGH'] >= df.shift(1).rolling(3)['HIGH'].min(), 'BUY_SIGNAL',
np.where(
df['LOW'] >= df.shift(1).rolling(3)['LOW'].min(), 'SELL_SIGNAL',
'NO_SIGNAL'
)
)