I am trying to write a batch gradient decent function in r in to use on a training and test set of data. So far I have the below code. However, when I run it, it only prints out the last parameters and the iteration it ran. I would like to store each iteration, test error and be able to visualise the cost convergence process. I am not sure where to put or how to incorporate the code into the function below.
GradD <- function(x, y, alpha = 0.006, epsilon = 10^-10){
iter <- 0
i <- 0
x <- cbind(rep(1, nrow(x)), x)
theta <- matrix(c(1,1), ncol(x), 1)
cost <- (1/(2*nrow(x)))* t(x%*% theta - y) %*% (x %*% theta - y)
delta <- 1
while (delta > epsilon){
i <- i + 1
theta <- theta - (alpha / nrow(x)) * (t(x) %*% (x %*% theta - y))
cval <- (1/(2*nrow(x))) * t(x %*% theta - y) %*% (x %*% theta - y)
cost <- append(cost, cval)
delta <- abs(cost[i+1] - cost[i])
if((cost[i+1] - cost[i]) > 0){
print("The cost is increasing. Try reducing alpha.")
return()
}
iter <- append(iter, i)
}
print(sprintf("Completed in %i iterations.", i))
return(theta)
}
TPredict <- function(theta, x){
x <- cbind(rep(1,nrow(x)), x)
return(x %*% theta)
}
EDIT I have tried to create a list that holds each iteration... however now i get errors when i run the code
error.cost <- function(x, y, theta){
sum( (X %*% theta - y)^2 ) / (2*length(y))
}
num_iters <- 2000
cost_history <- double(num_iters)
theta_history <- list(num_iters)
GradD <- function(x, y, alpha = 0.006, epsilon = 10^-10){
iter <- 2000
i <- 0
x <- cbind(rep(1,nrow(x)), x)
theta <- matrix(c(1,1),ncol(x),1)
cost <- (1/(2*nrow(x))) * t(x %*% theta - y) %*% (x %*% theta - y)
delta <- 1
while(delta > epsilon){
i <- i + 1
theta <- theta - (alpha / nrow(x)) * (t(x) %*% (x %*% theta - y))
cval <- (1/(2*nrow(x))) * t(x %*% theta - y) %*% (x %*% theta - y)
cost <- append(cost, cval)
delta <- abs(cost[i+1] - cost[i])
cost_history[i] <- error.cost(x, y, theta)
theta_history[[i]] <- theta
if((cost[i+1] - cost[i]) > 0){
print("The cost is increasing. Try reducing alpha.")
return()
}
iter <- append(iter, i)
}
print(sprintf("Completed in %i iterations.", i))
return(theta)
}
I get error in nrow(x) %% theta: non-conformable arguments. If i remove the nrow() in this function:
error.cost <- function(x, y, theta){
sum( (x %*% theta - y)^2 ) / (2*length(y))
}
then it prints out results but they are the wrong final results and I dont have the iterations stored at all
The below, mainly uses your code and is merely a proof of concept of capturing history. The alpha value was arrived at by fishing around for a value that would pass the if cost increasing
to create more than 1 or two records, which seemed the initial problem:
GradD2 <- function(x, y, alpha = 0.0000056, epsilon = 10^-10) {
cost <- vector(mode = 'numeric')
iter <- vector(mode = 'integer')
delta_hist <- vector(mode = 'numeric')
i <- 0
iter <- 0
x <- cbind(rep(1, nrow(x)), x)
theta <- matrix(c(1,1), ncol(x), 1)
cost <- (1/(2*nrow(x))) * t(x%*% theta -y) %*% (x %*% theta -y)
delta <- 1.0
while(length(iter) < 1000 ) { #todo - change back to while(delta>epsilon)
i <- i +1
theta <- theta - (alpha / nrow(x)) * (t(x) %*% (x %*% theta -y))
cval <- (1/(2*nrow(x))) * t(x %*% theta -y) %*% (x %*% theta -y)
cost <- append(cost, cval, after = length(cost))
delta <- abs(cost[i+1] - cost[i])
delta_hist <- append(delta_hist, delta, after = length(delta_hist))
if((cost[i+1] - cost[i]) > 0) {
print('The cost is increasing. Try reducing alpha.')
return(list(theta = theta,cost = cost, delta_hist = delta_hist, iter = iter))
}
iter <- append(iter, i, after = length(iter))
}
print(sprintf('Completed in %i iterations.', i))
return(list(theta = theta,cost = cost, delta_hist = delta_hist, iter = iter))
}
Results:
> str(GradD2_tst)
List of 4
$ theta : num [1:2, 1] 1.693 0.707
$ cost : num [1:1000] 88564 87541 86587 85698 84870 ...
$ delta_hist: num [1:999] 1024 954 889 828 771 ...
$ iter : num [1:1000] 0 1 2 3 4 5 6 7 8 9 ...
> GradD2_tst$delta_hist[994:999]
[1] 0.08580117 0.08580094 0.08580071 0.08580048 0.08580025 0.08580002
> GradD2_tst$cost[994:999]
[1] 73493.72 73493.63 73493.54 73493.46 73493.37 73493.29
>
Absent knowing otherwise, my x and y were:
> x <- as.matrix(sample(1:1000, 400), ncol =1)
> y <- sample(1:1000, 400)
This election for x, when used with the proper while(delta > epsilon) {
presented a mismatch for cval that produced a warning, and now doesn't. Dang.
Fishing for alpha again with epsilon 10^-1:
> GradD2_tst2 <- GradD2(x,y, alpha=0.006, epsilon = 10^-1)
[1] "The cost is increasing. Try reducing alpha."
> GradD2_tst2 <- GradD2(x,y, alpha=0.001, epsilon = 10^-1)
[1] "The cost is increasing. Try reducing alpha."
> GradD2_tst2 <- GradD2(x,y, alpha=0.0006, epsilon = 10^-1)
[1] "The cost is increasing. Try reducing alpha."
> GradD2_tst2 <- GradD2(x,y, alpha=0.00006, epsilon = 10^-1)
[1] "The cost is increasing. Try reducing alpha."
> GradD2_tst2 <- GradD2(x,y, alpha=0.000056, epsilon = 10^-1)
[1] "The cost is increasing. Try reducing alpha."
> GradD2_tst2 <- GradD2(x,y, alpha=0.000009, epsilon = 10^-1)
[1] "The cost is increasing. Try reducing alpha."
> GradD2_tst2 <- GradD2(x,y, alpha=0.0000056, epsilon = 10^-1)
[1] "Completed in 160 iterations."
>
> str(GradD2_tst2)
List of 4
$ theta : num [1:2, 1] 1.111 0.709
$ cost : num [1:161] 88564 87541 86587 85698 84870 ...
$ delta_hist: num [1:160] 1024 954 889 828 771 ...
$ iter : num [1:161] 0 1 2 3 4 5 6 7 8 9 ...
> GradD2_tst2$cost[155:161]
[1] 73566.06 73565.96 73565.85 73565.75 73565.65 73565.55 73565.45
> GradD2_tst2$delta_hist[155:161]
[1] 0.10493825 0.10364385 0.10243786 0.10131425 0.10026738 0.09929201 NA
>
Takes a very long time to run at epsilon = 10^-10 on one core. Mine never completed overnight, Ctl-C. HTH as to history.