Search code examples
pythonpytorchdataloaderdataset

How to create a custom data loader in Pytorch?


I have a file containing paths to images I would like to load into Pytorch, while utilizing the built-in dataloader features (multiprocess loading pipeline, data augmentations, and so on).

def create_links():
    data_dir = "/myfolder"

    full_path_list = []
    assert os.path.isdir(data_dir)
    for _, _, filenames in os.walk(data_dir):
        for filename in filenames:
            full_path_list.append(os.path.join(data_dir, filename))

    with open(config.data.links_file, 'w+') as links_file:
        for full_path in full_path_list:
            links_file.write(f"{full_path}\n")


def read_links_file_to_list():
    config = ConfigProvider.config()
    links_file_path = config.data.links_file
    if not os.path.isfile(links_file_path):
        raise RuntimeError("did you forget to create a file with links to images? Try using 'create_links()'")
    with open(links_file_path, 'r') as links_file:
        return links_file.readlines()

So I have a list of files (or a generator, or whatever works), file_list = read_links_file_to_list().

How can I build a Pytorch dataloader around it, and how would I use it?


Solution

  • What you want is a Custom Dataset. The __getitem__ method is where you would apply transforms such as data-augmentation etc. To give you an idea of what it looks like in practice you can take a look at this Custom Dataset I wrote the other day:

    class GTSR43Dataset(Dataset):
        """German Traffic Sign Recognition dataset."""
        def __init__(self, root_dir, train_file, transform=None):
            self.root_dir = root_dir
            self.train_file_path = train_file
            self.label_df = pd.read_csv(os.path.join(self.root_dir, self.train_file_path))
            self.transform = transform
            self.classes = list(self.label_df['ClassId'].unique())
    
        def __getitem__(self, idx):
            """Return (image, target) after resize and preprocessing."""
            img = os.path.join(self.root_dir, self.label_df.iloc[idx, 7])
            
            X = Image.open(img)
            y = self.class_to_index(self.label_df.iloc[idx, 6])
    
            if self.transform:
                X = self.transform(X)
    
            return X, y
        
        def class_to_index(self, class_name):
            """Returns the index of a given class."""
            return self.classes.index(class_name)
        
        def index_to_class(self, class_index):
            """Returns the class of a given index."""
            return self.classes[class_index] 
        
        def get_class_count(self):
            """Return a list of label occurences"""
            cls_count = dict(self.label_df.ClassId.value_counts())
    #         cls_percent = list(map(lambda x: (1 - x / sum(cls_count)), cls_count))
            return cls_count
        
        def __len__(self):
            """Returns the length of the dataset."""
            return len(self.label_df)