How can I calculate Rankits with Python?
https://en.wikipedia.org/wiki/Rankit
In particular I want to reproduce the example on Wikipedia:
So I search for a function which takes a list [16, 22, 40, 43, 65, 75]
and then returns the corresponding rankits: [−1.2672, −0.6418, −0.2016, 0.2016, 0.6418, 1.2672]
observation = [16, 22, 40, 43, 65, 75]
import numpy as np
import scipy.stats
def Q_Q_Prob(data):
n = len(data)
prob_level = []
for i in range(1,n+1):
prob_level.append(np.round((i-0.5)/n,5))
Standard_normal_quantiles = scipy.stats.norm.ppf(prob_level)
return Standard_normal_quantiles
print(Q_Q_Prob(observation))
This gives exact result for the example in book name : Applied Multivariate Statistical Analysis (RICHARD A. JOHNSON), However not giving exact values for the mentioned example. Sharing this because this might give you a idea.