I imagine we all agree that it is considered idiomatic C to access a true multidimensional array by dereferencing a (possibly offset) pointer to its first element in a one-dimensional fashion, e.g.:
void clearBottomRightElement(int *array, int M, int N)
{
array[M*N-1] = 0; // Pretend the array is one-dimensional
}
int mtx[5][3];
...
clearBottomRightElement(&mtx[0][0], 5, 3);
However, the language-lawyer in me needs convincing that this is actually well-defined C! In particular:
Does the standard guarantee that the compiler won't put padding in-between e.g. mtx[0][2]
and mtx[1][0]
?
Normally, indexing off the end of an array (other than one-past the end) is undefined (C99, 6.5.6/8). So the following is clearly undefined:
struct {
int row[3]; // The object in question is an int[3]
int other[10];
} foo;
int *p = &foo.row[7]; // ERROR: A crude attempt to get &foo.other[4];
So by the same rule, one would expect the following to be undefined:
int mtx[5][3];
int (*row)[3] = &mtx[0]; // The object in question is still an int[3]
int *p = &(*row)[7]; // Why is this any better?
So why should this be defined?
int mtx[5][3];
int *p = &(&mtx[0][0])[7];
So what part of the C standard explicitly permits this? (Let's assume c99 for the sake of discussion.)
EDIT
Note that I have no doubt that this works fine in all compilers. What I'm querying is whether this is explicitly permitted by the standard.
The only obstacle to the kind of access you want to do is that objects of type int [5][3]
and int [15]
are not allowed to alias one another. Thus if the compiler is aware that a pointer of type int *
points into one of the int [3]
arrays of the former, it could impose array bounds restrictions that would prevent accessing anything outside that int [3]
array.
You might be able to get around this issue by putting everything inside a union that contains both the int [5][3]
array and the int [15]
array, but I'm really unclear on whether the union hacks people use for type-punning are actually well-defined. This case might be slightly less problematic since you would not be type-punning individual cells, only the array logic, but I'm still not sure.
One special case that should be noted: if your type were unsigned char
(or any char
type), accessing the multi-dimensional array as a one-dimensional array would be perfectly well-defined. This is because the one-dimensional array of unsigned char
that overlaps it is explicitly defined by the standard as the "representation" of the object, and is inherently allowed to alias it.