Search code examples
pythoncjkbert-language-model

HuggingFace for Japanese tokenizer


I recently tested on the below code based on the source: https://github.com/cl-tohoku/bert-japanese/blob/master/masked_lm_example.ipynb

import torch 
from transformers.tokenization_bert_japanese import BertJapaneseTokenizer
from transformers.modeling_bert import BertForMaskedLM

tokenizer = BertJapaneseTokenizer.from_pretrained('cl-tohoku/bert-base-japanese-whole-word-masking')
model = BertForMaskedLM.from_pretrained('cl-tohoku/bert-base-japanese-whole-word-masking')

input_ids = tokenizer.encode(f'''
    青葉山で{tokenizer.mask_token}の研究をしています。
''', return_tensors='pt')

when i try to encode it, I received error such as:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-29-f8582275f4db> in <module>
      1 input_ids = tokenizer.encode(f'''
      2     青葉山で{tokenizer.mask_token}の研究をしています。
----> 3 ''', return_tensors='pt')

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_utils_base.py in encode(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, return_tensors, **kwargs)
   1428             stride=stride,
   1429             return_tensors=return_tensors,
-> 1430             **kwargs,
   1431         )
   1432 

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_utils_base.py in encode_plus(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, is_pretokenized, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
   1740             return_length=return_length,
   1741             verbose=verbose,
-> 1742             **kwargs,
   1743         )
   1744 

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_utils.py in _encode_plus(self, text, text_pair, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_pretokenized, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
    452             )
    453 
--> 454         first_ids = get_input_ids(text)
    455         second_ids = get_input_ids(text_pair) if text_pair is not None else None
    456 

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_utils.py in get_input_ids(text)
    423         def get_input_ids(text):
    424             if isinstance(text, str):
--> 425                 tokens = self.tokenize(text, **kwargs)
    426                 return self.convert_tokens_to_ids(tokens)
    427             elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_utils.py in tokenize(self, text, **kwargs)
    362 
    363         no_split_token = self.unique_no_split_tokens
--> 364         tokenized_text = split_on_tokens(no_split_token, text)
    365         return tokenized_text
    366 

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_utils.py in split_on_tokens(tok_list, text)
    356                     (
    357                         self._tokenize(token) if token not in self.unique_no_split_tokens else [token]
--> 358                         for token in tokenized_text
    359                     )
    360                 )

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_utils.py in <genexpr>(.0)
    356                     (
    357                         self._tokenize(token) if token not in self.unique_no_split_tokens else [token]
--> 358                         for token in tokenized_text
    359                     )
    360                 )

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_bert_japanese.py in _tokenize(self, text)
    153     def _tokenize(self, text):
    154         if self.do_word_tokenize:
--> 155             tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
    156         else:
    157             tokens = [text]

~/.pyenv/versions/3.7.0/envs/personal/lib/python3.7/site-packages/transformers/tokenization_bert_japanese.py in tokenize(self, text, never_split, **kwargs)
    205                 break
    206 
--> 207             token, _ = line.split("\t")
    208             token_start = text.index(token, cursor)
    209             token_end = token_start + len(token)

ValueError: too many values to unpack (expected 2)

Does anyone experienced this before? I tried a lot of different ways and refer to many posts but all using the same methods and no explanations, I just wanted to test multiple languages, other languages seem to work fine but not with japanese and I dont know why.


Solution

  • NOTE: Shortly after this question I released a version of IPADic that works with the latest versions of mecab-python3. You should be able to fix things by installing transformers[ja], which will install the main dictionaries used with HuggingFace models.


    I'm the mecab-python3 maintainer. Transformers relies on the bundled dictionary in versions prior to 1.0, which has been removed because it's old. I will be adding it as an option in a release soon, but in the meantime you can install an old version.

    The command posted by vivasra doesn't work because it specifies a version of a different package (notice there's no "3" in the package name) that doesn't exist. You can use this:

    pip install mecab-python3=0.996.5
    

    If you still have trouble please open an issue on Github.