I am trying to rebuild an image that I previously decomposed with SVD. The image is this:
I successfully decomposed the image with this code:
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img = Image.open('steve.jpg')
img = np.mean(img, 2)
U,s,V = np.linalg.svd(img)
s
an array of the singular values of the image. The more singular values I take, the more the reconstructed image is similar to the original one.
For example, if I take 20 singular values:
n = 20
S = np.zeros(np.shape(img))
for i in range(0, n):
S[i, i] = s[i]
recon_img = U@S@V
plt.imshow(recon_img)
plt.axis('off')
plt.show()
I would like to fix the minumum number of singular values in order to get a good result: an image pretty
similary to the original one. Moreover, I would like to see how much the result changes when I take a higher number of singular values. I tried with an animation without success:
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
img = Image.open('steve.jpg')
img = np.mean(img, 2)
U,s,V = np.linalg.svd(img)
fig = plt.figure()
def update(i):
S = np.zeros(np.shape(img))
n = 20
for i in range(0, n):
S[i, i] = s[i]
recon_img = U@S@V
plt.imshow(recon_img)
plt.axis('off')
ani = FuncAnimation(fig = fig, func = update, frames = 20, interval = 10)
plt.show()
If you plot the s
singular values you can see a very steep decreasing curve, better if you use a log scale for the y axis:
plt.semilogy(s, 'k-')
As you can see, the first 50 singular values are the most important ones: almost everyone more that 1000. Values from the ~50th to the ~250th are an order of magnitude lower and their values decreases slowly: the slope of the curve is contained (remember the logarithmic y scale). That beeing said I would take the first 50 elements to rebulid your image.
Regarding the animation:
while the animation updates frame by frame, the counter i
is increased by 1. In your code, you mistakenly use i
to slice the s
and define S
; you should rename the counter.
Moreover, as animation goes on, you need to take an increasing number of singular values, this is set by n
which you keep constant frame by frame. You need to update n
at each loop, so you can use it as the counter.
Furthermore, you need the erase the previous plotted image, so you need to add a plt.gca().cla()
at the beginning of the update
function.
Check the code below for reference:
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
img = Image.open('steve.jpg')
img = np.mean(img, 2)
U,s,V = np.linalg.svd(img)
fig, ax = plt.subplots(1, 2, figsize = (4, 4))
ax[0].imshow(img)
ax[0].axis('off')
ax[0].set_title('Original')
def init():
ax[1].cla()
ax[1].imshow(np.zeros(np.shape(img)))
ax[1].axis('off')
ax[1].set_title('Reconstructed\nn = 00')
def update(n):
ax[1].cla()
S = np.zeros(np.shape(img))
for i in range(0, n):
S[i, i] = s[i]
recon_img = U@S@V
ax[1].imshow(recon_img)
ax[1].axis('off')
ax[1].set_title(f'Reconstructed\nn = {n:02}')
ani = FuncAnimation(fig = fig, func = update, frames = 50, init_func = init, interval = 10)
ani.save('ani.gif', writer = 'imagemagick')
plt.show()
which gives this animation:
As you can see, the first 50 elements are enough to rebuild you image pretty well. The rest of the elements adds some noise and changes a little the background.