I am reading data from Kafka and trying to write it to the HDFS file system in ORC format. I have used the below link reference from their official website. But I can see that Flink write exact same content for all data and make so many files and all files are ok 103KB
Please find my code below.
object BeaconBatchIngest extends StreamingBase {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
def getTopicConfig(configs: List[Config]): Map[String, String] = (for (config: Config <- configs) yield (config.getString("sourceTopic"), config.getString("destinationTopic"))).toMap
def setKafkaConfig():Unit ={
val kafkaParams = new Properties()
kafkaParams.setProperty("bootstrap.servers","")
kafkaParams.setProperty("zookeeper.connect","")
kafkaParams.setProperty("group.id", DEFAULT_KAFKA_GROUP_ID)
kafkaParams.setProperty("auto.offset.reset", "latest")
val kafka_consumer:FlinkKafkaConsumer[String] = new FlinkKafkaConsumer[String]("sourceTopics", new SimpleStringSchema(),kafkaParams)
kafka_consumer.setStartFromLatest()
val stream: DataStream[DataParse] = env.addSource(kafka_consumer).map(new temp)
val schema: String = "struct<_col0:string,_col1:bigint,_col2:string,_col3:string,_col4:string>"
val writerProperties = new Properties()
writerProperties.setProperty("orc.compress", "ZLIB")
val writerFactory = new OrcBulkWriterFactory(new PersonVectorizer(schema),writerProperties,new org.apache.hadoop.conf.Configuration);
val sink: StreamingFileSink[DataParse] = StreamingFileSink
.forBulkFormat(new Path("hdfs://warehousestore/hive/warehouse/metrics_test.db/upp_raw_prod/hour=1/"), writerFactory)
.build()
stream.addSink(sink)
}
def main(args: Array[String]): Unit = {
setKafkaConfig()
env.enableCheckpointing(5000)
env.execute("Kafka_Flink_HIVE")
}
}
class temp extends MapFunction[String,DataParse]{
override def map(record: String): DataParse = {
new DataParse(record)
}
}
class DataParse(data : String){
val parsedJason = parse(data)
val timestamp = compact(render(parsedJason \ "timestamp")).replaceAll("\"", "").toLong
val event = compact(render(parsedJason \ "event")).replaceAll("\"", "")
val source_id = compact(render(parsedJason \ "source_id")).replaceAll("\"", "")
val app = compact(render(parsedJason \ "app")).replaceAll("\"", "")
val json = data
}
class PersonVectorizer(schema: String) extends Vectorizer[DataParse](schema) {
override def vectorize(element: DataParse, batch: VectorizedRowBatch): Unit = {
val eventColVector = batch.cols(0).asInstanceOf[BytesColumnVector]
val timeColVector = batch.cols(1).asInstanceOf[LongColumnVector]
val sourceIdColVector = batch.cols(2).asInstanceOf[BytesColumnVector]
val appColVector = batch.cols(3).asInstanceOf[BytesColumnVector]
val jsonColVector = batch.cols(4).asInstanceOf[BytesColumnVector]
timeColVector.vector(batch.size + 1) = element.timestamp
eventColVector.setVal(batch.size + 1, element.event.getBytes(StandardCharsets.UTF_8))
sourceIdColVector.setVal(batch.size + 1, element.source_id.getBytes(StandardCharsets.UTF_8))
appColVector.setVal(batch.size + 1, element.app.getBytes(StandardCharsets.UTF_8))
jsonColVector.setVal(batch.size + 1, element.json.getBytes(StandardCharsets.UTF_8))
}
}
With bulk formats (such as ORC), the StreamingFileSink
rolls over to new files with every checkpoint. If you reduce the checkpointing interval (currently 5 seconds), it won't write so many files.