I want to calculate (weighted) logistic regression in Python. The weights were calculated to adjust the distribution of the sample regarding the population. However, the results don´t change if I use weights.
import numpy as np
import pandas as pd
import statsmodels.api as sm
The data looks like this. The target variable is VISIT
. The features are all other variables except WEIGHT_both
(which is the weight I want to use).
df.head()
WEIGHT_both VISIT Q19_1 Q19_2 Q19_3 Q19_4 Q19_5 Q19_6 Q19_7 Q19_8 ... Q19_23 Q19_24 Q19_25 Q19_26 Q19_27 Q19_28 Q19_29 Q19_30 Q19_31 Q19_32
0 0.022320 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 4.0 4.0 1.0 1.0 1.0 1.0 2.0 3.0 3.0 2.0
1 0.027502 1.0 3.0 2.0 2.0 2.0 3.0 4.0 3.0 2.0 ... 3.0 2.0 2.0 2.0 2.0 4.0 2.0 4.0 2.0 2.0
2 0.022320 1.0 2.0 3.0 1.0 4.0 3.0 3.0 3.0 2.0 ... 3.0 3.0 3.0 2.0 2.0 1.0 2.0 2.0 1.0 1.0
3 0.084499 1.0 2.0 2.0 2.0 2.0 2.0 4.0 1.0 1.0 ... 2.0 2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0
4 0.022320 1.0 3.0 4.0 3.0 3.0 3.0 2.0 3.0 3.0 ... 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Without the weight the model looks like this:
X = df.drop('WEIGHT_both', axis = 1)
X = X.drop('VISIT', axis = 1)
X = sm.add_constant(X)
w = = df['WEIGHT_both']
Y= df['VISIT']
fit = sm.Logit(Y, X).fit()
fit.summary()
Dep. Variable: VISIT No. Observations: 7971
Model: Logit Df Residuals: 7938
Method: MLE Df Model: 32
Date: Sun, 05 Jul 2020 Pseudo R-squ.: 0.2485
Time: 16:41:12 Log-Likelihood: -3441.2
converged: True LL-Null: -4578.8
Covariance Type: nonrobust LLR p-value: 0.000
coef std err z P>|z| [0.025 0.975]
const 3.8098 0.131 29.126 0.000 3.553 4.066
Q19_1 -0.1116 0.063 -1.772 0.076 -0.235 0.012
Q19_2 -0.2718 0.061 -4.483 0.000 -0.391 -0.153
Q19_3 -0.2145 0.061 -3.519 0.000 -0.334 -0.095
With the sample weight the result looks like this (no change):
fit2 = sm.Logit(Y, X, sample_weight = w).fit()
# same thing if I use class_weight
fit2.summary()
Dep. Variable: VISIT No. Observations: 7971
Model: Logit Df Residuals: 7938
Method: MLE Df Model: 32
Date: Sun, 05 Jul 2020 Pseudo R-squ.: 0.2485
Time: 16:41:12 Log-Likelihood: -3441.2
converged: True LL-Null: -4578.8
Covariance Type: nonrobust LLR p-value: 0.000
coef std err z P>|z| [0.025 0.975]
const 3.8098 0.131 29.126 0.000 3.553 4.066
Q19_1 -0.1116 0.063 -1.772 0.076 -0.235 0.012
Q19_2 -0.2718 0.061 -4.483 0.000 -0.391 -0.153
Q19_3 -0.2145 0.061 -3.519 0.000 -0.334 -0.095
I calculated the regression with other Programms (e.g. SPSS, R). The weighted result has to be different.
Here is an example (R-Code).
Without weights (same result as with Python code):
fit = glm(VISIT~., data = df[ -c(1)] , family = "binomial")
summary(fit)
Call:
glm(formula = VISIT ~ ., family = "binomial", data = df[-c(1)])
Deviance Residuals:
Min 1Q Median 3Q Max
-3.1216 -0.6984 0.3722 0.6838 2.1083
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.80983 0.13080 29.126 < 2e-16 ***
Q19_1 -0.11158 0.06296 -1.772 0.076374 .
Q19_2 -0.27176 0.06062 -4.483 7.36e-06 ***
Q19_3 -0.21451 0.06096 -3.519 0.000434 ***
Q19_4 0.22417 0.05163 4.342 1.41e-05 ***
With weights:
fit2 = glm(VISIT~., data = df[ -c(1)], weights = df$WEIGHT_both, family = "binomial")
summary(fit2)
Call:
glm(formula = VISIT ~ ., family = "binomial", data = df[-c(1)],
weights = df$WEIGHT_both)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.4894 -0.3315 0.1619 0.2898 3.7878
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.950e-01 1.821e-01 2.718 0.006568 **
Q19_1 -6.497e-02 8.712e-02 -0.746 0.455835
Q19_2 -1.720e-02 8.707e-02 -0.198 0.843362
Q19_3 -1.114e-01 8.436e-02 -1.320 0.186743
Q19_4 1.898e-02 7.095e-02 0.268 0.789066
Any idea how to use weights in a logistic regression?
I think one way is to use smf.glm()
where you can provide the weights as freq_weights
, you should check this section on weighted glm and see whether it is what you want to achieve. Below I provide an example where it is used in the same way as weights=
in R :
import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.api as sm
data = sns.load_dataset("iris")
data['species'] = (data['species'] == "versicolor").astype(int)
fit = smf.glm("species ~ sepal_length + sepal_width + petal_length + petal_width",
family=sm.families.Binomial(),data=data).fit()
fit.summary()
coef std err z P>|z| [0.025 0.975]
Intercept 7.3785 2.499 2.952 0.003 2.480 12.277
sepal_length -0.2454 0.650 -0.378 0.706 -1.518 1.028
sepal_width -2.7966 0.784 -3.569 0.000 -4.332 -1.261
petal_length 1.3136 0.684 1.921 0.055 -0.027 2.654
petal_width -2.7783 1.173 -2.368 0.018 -5.078 -0.479
Now provide weights:
wts = np.repeat(np.arange(1,6),30)
fit = smf.glm("species ~ sepal_length + sepal_width + petal_length + petal_width",
family=sm.families.Binomial(),data=data,freq_weights=wts).fit()
fit.summary()
coef std err z P>|z| [0.025 0.975]
Intercept 8.7146 1.444 6.036 0.000 5.885 11.544
sepal_length -0.2053 0.359 -0.571 0.568 -0.910 0.499
sepal_width -2.7293 0.454 -6.012 0.000 -3.619 -1.839
petal_length 0.8920 0.365 2.440 0.015 0.176 1.608
petal_width -2.8420 0.622 -4.570 0.000 -4.061 -1.623
So in R you have the unweighted:
glm(Species ~ .,data=data,family=binomial)
Call: glm(formula = Species ~ ., family = binomial, data = data)
Coefficients:
(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
7.3785 -0.2454 -2.7966 1.3136 -2.7783
Degrees of Freedom: 149 Total (i.e. Null); 145 Residual
Null Deviance: 191
Residual Deviance: 145.1 AIC: 155.1
And the weighted model
glm(Species ~ .,data=data,family=binomial,weights=rep(1:5,each=30))
Call: glm(formula = Species ~ ., family = binomial, data = data, weights = rep(1:5,
each = 30))
Coefficients:
(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
8.7146 -0.2053 -2.7293 0.8920 -2.8420
Degrees of Freedom: 149 Total (i.e. Null); 145 Residual
Null Deviance: 572.9
Residual Deviance: 448.9 AIC: 458.9