I can't find much information on what the differences are in running Airflow on Google Cloud Composer vs Docker. I am trying to switch our data pipelines that are currently on Google Cloud Composer onto Docker to just run locally but am trying to conceptualize what the difference is.
Cloud Composer is a GCP managed service for Airflow. Composer runs in something known as a Composer environment, which runs on Google Kubernetes Engine cluster. It also makes use of various other GCP services such as:
How Cloud Composer benefits?
Focus on your workflows, and let Composer manage the infrastructure (creating the workers, setting up the web server, the message brokers),
One-click to create a new Airflow environment,
Easy and controlled access to the Airflow Web UI,
Provide logging and monitoring metrics, and alert when your workflow is not running,
Integrate with all of Google Cloud services: Big Data, Machine Learning and so on. Run jobs elsewhere, i.e. other cloud provider (Amazon).
Of course you have to pay for the hosting service, but the cost is low compare to if you have to host a production airflow server on your own.
Airflow on-premise
To sum up, if you don’t want to deal with all of those DevOps problem, and instead just want to focus on your workflow, then Google Cloud composer is a great solution for you.
Additionally, I would like to share with you tutorials that set up Airflow with Docker and on GCP Cloud Composer.