Suppose I have this Pipeline
object:
from sklearn.pipeline import Pipeline
pipe = Pipeline([
('my_transform', my_transform()),
('estimator', SVC())
])
To pass the hyperparameters to my Support Vector Classifier (SVC) I could do something like this:
pipe_parameters = {
'estimator__gamma': (0.1, 1),
'estimator__kernel': (rbf)
}
Then, I could use GridSearchCV
:
from sklearn.model_selection import GridSearchCV
grid = GridSearchCV(pipe, pipe_parameters)
grid.fit(X_train, y_train)
We know that a linear kernel does not use gamma as a hyperparameter. So, how could I include the linear kernel in this GridSearch?
For example, In a simple GridSearch
(without Pipeline) I could do:
param_grid = [
{'C': [ 0.1, 1, 10, 100, 1000],
'gamma': [0.0001, 0.001, 0.01, 0.1, 1],
'kernel': ['rbf']},
{'C': [0.1, 1, 10, 100, 1000],
'kernel': ['linear']},
{'C': [0.1, 1, 10, 100, 1000],
'gamma': [0.0001, 0.001, 0.01, 0.1, 1],
'degree': [2, 3],
'kernel': ['poly']}
]
grid = GridSearchCV(SVC(), param_grid)
Therefore, I need a working version of this sort of code:
pipe_parameters = {
'bag_of_words__max_features': (None, 1500),
'estimator__kernel': (rbf),
'estimator__gamma': (0.1, 1),
'estimator__kernel': (linear),
'estimator__C': (0.1, 1),
}
Meaning that I want to use as hyperparameters the following combinations:
kernel = rbf, gamma = 0.1
kernel = rbf, gamma = 1
kernel = linear, C = 0.1
kernel = linear, C = 1
You are almost there. Similar to how you created multiple dictionaries for SVC
model, create a list of dictionaries for the pipeline.
Try this example:
from sklearn.datasets import fetch_20newsgroups
from sklearn.pipeline import pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import SVC
categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',
]
remove = ('headers', 'footers', 'quotes')
data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42,
remove=remove)
pipe = Pipeline([
('bag_of_words', CountVectorizer()),
('estimator', SVC())])
pipe_parameters = [
{'bag_of_words__max_features': (None, 1500),
'estimator__C': [ 0.1, ],
'estimator__gamma': [0.0001, 1],
'estimator__kernel': ['rbf']},
{'bag_of_words__max_features': (None, 1500),
'estimator__C': [0.1, 1],
'estimator__kernel': ['linear']}
]
from sklearn.model_selection import GridSearchCV
grid = GridSearchCV(pipe, pipe_parameters, cv=2)
grid.fit(data_train.data, data_train.target)
grid.best_params_
# {'bag_of_words__max_features': None,
# 'estimator__C': 0.1,
# 'estimator__kernel': 'linear'}