I have a dataframe looking something like that:
y X1 X2 X3
ID year
1 2010 1 2 3 4
1 2011 3 4 5 6
2 2010 1 2 3 4
2 2011 3 4 5 6
2 2012 7 8 9 10
...
I'd like to create several bootstrap sample from the original df, calculate a fixed effects panel regression on the new bootstrap samples and than store the corresponding beta coefficients. The approach I found for "normal" linear regression is the following
betas = pd.DataFrame()
for i in range(10):
# Creating a bootstrap sample with replacement
bootstrap = df.sample(n=df.shape[0], replace=True)
# Fit the regression and save beta coefficients
DV_bs = bootstrap.y
IV_bs = sm2.add_constant(bootstrap[['X1', 'X2', 'X3']])
fe_mod_bs = PanelOLS(DV_bs, IV_bs, entity_effects=True ).fit(cov_type='clustered', cluster_entity=True)
b = pd.DataFrame(fe_mod_bs.params)
print(b.head())
betas = pd.concat([betas, b], axis = 1, join = 'outer')
Unfortunately the bootstrap samples need to be selected by group for the panel regression, so that a complete ID is picked instead of just one row. I could not figure out how to extend the function to create a sample that way. So I basically have two questions:
I solved my problem with the following code:
companies = pd.DataFrame(df.reset_index().Company.unique())
betas_summary = pd.DataFrame()
for i in tqdm(range(1, 10001)):
# Creating a bootstrap sample with replacement
bootstrap = companies.sample(n=companies.shape[0], replace=True)
bootstrap.rename(columns={bootstrap.columns[0]: "Company"}, inplace=True)
Period = list(range(1, 25))
list_of_bs_comp = bootstrap.Company.to_list()
multiindex = [list_of_bs_comp, np.array(Period)]
bs_df = pd.MultiIndex.from_product(multiindex, names=['Company', 'Period'])
bs_result = df.loc[bs_df, :]
betas = pd.DataFrame()
# Fit the regression and save beta coefficients
DV_bs = bs_result.y
IV_bs = sm2.add_constant(bs_result[['X1', 'X2', 'X3']])
fe_mod_bs = PanelOLS(DV_bs, IV_bs, entity_effects=True ).fit(cov_type='clustered', cluster_entity=True)
b = pd.DataFrame(fe_mod_bs.params)
b.rename(columns={'parameter':"b"}, inplace=True)
betas = pd.concat([betas, b], axis = 1, join = 'outer')
where Company
is my entity variable and Period
is my time variable