The code of my encoder model is given below, I have made it using functional API(TF 2.0)
embed_obj = EndTokenLayer()
def encoder_model(inp):
input_1 = embed_obj(inp)
h = Masking([(lambda x: x*0)(x) for x in range(128)])(input_1)
lstm1 , state_h, state_c = LSTM(512, return_sequences=True, return_state=True)(h)
model = Model(inputs=input_1, outputs=[lstm1, state_h, state_c])
return model
And when I'm calling my model:
for x,y in train.take(1):
k = x
model = encoder_model(k)
I'm getting the following error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-98-46e9c9596137> in <module>()
2 for x,y in train.take(1):
3 k = x
----> 4 model = encoder_model(k)
7 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in op(self)
1111 def op(self):
1112 raise AttributeError(
-> 1113 "Tensor.op is meaningless when eager execution is enabled.")
1114
1115 @property
AttributeError: Tensor.op is meaningless when eager execution is enabled.
In TF2, static graph (preventing eager execution with dynamic graph) can be constructed by using a decorator. Try @tf.function decorator
@tf.function
def encoder_model(inp):
input_1 = embed_obj(inp)
h = Masking([(lambda x: x*0)(x) for x in range(128)])(input_1)
lstm1 , state_h, state_c = LSTM(512, return_sequences=True, return_state=True)(h)
model = Model(inputs=input_1, outputs=[lstm1, state_h, state_c])
return model
Then call the function
for x,y in train.take(1):
k = x
model = encoder_model(k)