I'm trying to label the nodes in my polar coordinates plot. There are 3 "axes" that are split and I have figured out how to use the quadrants to select which nodes to label. However, I can't figure out how to align these on the edge of the plot (i.e. axis_maximum
). I have spent several hours trying to figure this out. My best option was to pad with .
on the left or right but this was a fixed number and got messy when there were too many points. Also, this method went too far outside the "circular" nature of the plot when there were a lot of points. I did some trigonometry to figure out the lengths for everything but this was difficult to implement using text units such as .
.
If anyone can help it would be greatly appreciated. I showed what the plot looks like below and then added in red what I am trying to implement. label
in the mock figure corresponds to name_node
in the for-loop. Ideally I would like to steer away from using characters like .
and would rather use an actual matplotlib
Line
object so I can specify linestyle
like :
or -
.
In summary, I would like to do the following:
name_node
text.EDIT:
import numpy as np
from numpy import array # I don't like this but it's for loading in the pd.DataFrame
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'node_positions_normalized': {'iris_100': 200.0, 'iris_101': 600.0, 'iris_102': 1000.0, 'iris_0': 200.0, 'iris_1': 600.0, 'iris_2': 1000.0, 'iris_50': 200.0, 'iris_51': 600.0, 'iris_52': 1000.0}, 'theta': {'iris_100': array([5.42070629, 6.09846678]), 'iris_101': array([5.42070629, 6.09846678]), 'iris_102': array([5.42070629, 6.09846678]), 'iris_0': array([1.23191608, 1.90967657]), 'iris_1': array([1.23191608, 1.90967657]), 'iris_2': array([1.23191608, 1.90967657]), 'iris_50': array([3.32631118, 4.00407168]), 'iris_51': array([3.32631118, 4.00407168]), 'iris_52': array([3.32631118, 4.00407168])}})
axis_maximum = df["node_positions_normalized"].max()
thetas = np.unique(np.stack(df["theta"].values).ravel())
def pol2cart(rho, phi):
x = rho * np.cos(phi)
y = rho * np.sin(phi)
return(x, y)
def _get_quadrant_info(theta_representative):
# 0/360
if theta_representative == np.deg2rad(0):
quadrant = 0
# 90
if theta_representative == np.deg2rad(90):
quadrant = 90
# 180
if theta_representative == np.deg2rad(180):
quadrant = 180
# 270
if theta_representative == np.deg2rad(270):
quadrant = 270
# Quadrant 1
if np.deg2rad(0) < theta_representative < np.deg2rad(90):
quadrant = 1
# Quadrant 2
if np.deg2rad(90) < theta_representative < np.deg2rad(180):
quadrant = 2
# Quadrant 3
if np.deg2rad(180) < theta_representative < np.deg2rad(270):
quadrant = 3
# Quadrant 4
if np.deg2rad(270) < theta_representative < np.deg2rad(360):
quadrant = 4
return quadrant
with plt.style.context("seaborn-white"):
fig = plt.figure(figsize=(8,8))
ax = plt.subplot(111, polar=True)
ax_cartesian = fig.add_axes(ax.get_position(), frameon=False, polar=False)
ax_cartesian.set_xlim(-axis_maximum, axis_maximum)
ax_cartesian.set_ylim(-axis_maximum, axis_maximum)
# Draw axes
for theta in thetas:
ax.plot([theta,theta], [0,axis_maximum], color="black")
# Draw nodes
for name_node, data in df.iterrows():
r = data["node_positions_normalized"]
for theta in data["theta"]:
ax.scatter(theta, r, color="teal", s=150, edgecolor="black", linewidth=1, alpha=0.618)
# Draw node labels
quadrant = _get_quadrant_info(np.mean(data["theta"]))
# pad on the right and push label to left
if quadrant in {1,4}:
theta_anchor_padding = min(data["theta"])
# pad on left and push label to the right
if quadrant in {2,3}:
theta_anchor_padding = max(data["theta"])
# Plot
ax.text(
s=name_node,
x=theta_anchor_padding,
y=r,
horizontalalignment="center",
verticalalignment="center",
)
ax.set_rlim((0,axis_maximum))
# Convert polar to cartesian and plot on cartesian overlay?
xf, yf = pol2cart(theta_anchor_padding, r) #fig.transFigure.inverted().transform(ax.transData.transform((theta_anchor_padding, r)))
ax_cartesian.plot([xf, axis_maximum], [yf, yf])
You can use annotate
instead of text
, this allows you to specify the text coordinates and the text coordinate system independently of the point coordinates. We place the text in figure coordinates (0
to 1
, see here for details). It's important to get the transformation from data to figure coordinates after the r
limit is set.
with plt.style.context("seaborn-white"):
fig = plt.figure(figsize=(8,8))
ax = plt.subplot(111, polar=True)
ax.set_rlim((0,axis_maximum))
ann_transf = ax.transData + fig.transFigure.inverted()
# Draw axes
for theta in thetas:
ax.plot([theta,theta], [0,axis_maximum], color="black")
# Draw nodes
for name_node, data in df.iterrows():
r = data["node_positions_normalized"]
for theta in data["theta"]:
ax.scatter(theta, r, color="teal", s=150, edgecolor="black", linewidth=1, alpha=0.618)
# Draw node labels
quadrant = _get_quadrant_info(np.mean(data["theta"]))
# pad on the right and push label to left
if quadrant in {1,4}:
theta_anchor_padding = min(data["theta"])
# pad on left and push label to the right
if quadrant in {2,3}:
theta_anchor_padding = max(data["theta"])
# Plot
_,y = ann_transf.transform((theta_anchor_padding, r))
ax.annotate(name_node,
(theta_anchor_padding,r),
(0.91 if quadrant in {1,4} else 0.01, y),
textcoords='figure fraction',
arrowprops=dict(arrowstyle='-', color='r'),
color='r',
verticalalignment='center'
)