I'm new to Julia and I am trying to implement Julia's multithreading but I believe I am running into the "race condition problem". Here I am plotting the mandelbrot but I believe because of the race condition the array index [n] is messing with the color mapping. I tried using the atomic feature to the index n but apparently i cant use that type as an index. Here are pictures to compare as well as the code block.
Thanks!
module MandelBrot
using Plots
#make some functions for mandelbrot stuff
#find out if a number is part of the set
#remember the mandelbrot is symmetrical about the real number plane
function mandel(c)
#determine if a number is in the set or not in the set -
max_iter = 1000;
bound = 2
z = 0
n = 0
#if the magnitude of z exceeds two we know we are done.
while abs(z)<bound && n<max_iter
z = z^2+c
n+=1
end
return n #if n is 1000 assume c is good, else not of the set
end
#map n to a color
function brot(n)
rgb = 250
m = (n%rgb) /rgb#divide 250
if 0< n <= 250
c = RGB(1,m,0)
elseif 250<n<=500
c = RGB(1-m,1,0)
elseif 500<n<=750
c = RGB(0,1,m)
elseif 750<n<=999
c = RGB(0,1-m,1)
else
c=RGB(0,0,0)
end
return c
#TODO: append this c to an array of color values
end
#mrandom
function mandelbrot(reals,imags)
#generate #real amount of points between -2 and 1
#and #imag amount of points between 0 and i
#determine if any of those combinations are in the mandelbrot set
r = LinRange(-2,1,reals)
i = LinRange(-1,1,imags)
master_list = zeros(Complex{Float64},reals*imags,1)
color_assign = Array{RGB{Float64}}(undef,reals*imags,1)
#n = Threads.Atomic{Int64}(1)
n = 1
Threads.@threads for real_num in r
for imaginary_num in i
#z = complex(real_num, imaginary_num) #create the number
#master_list[n] = z #add it to the list
#color_assign[n,1] = (brot ∘ mandel)(z) #function of function! \circ + tab
#or would this be faster? since we dont change z all the time?
master_list[n] = complex(real_num, imaginary_num)
color_assign[n,1] = (brot ∘ mandel)(complex(real_num, imaginary_num))
n+=1
#Threads.atomic_add!(n,1)
end
end
gr(markerstrokewidth=0,markerstrokealpha=0,markersize=.5,legend=false)
scatter(master_list,markerstrokecolor=color_assign,color=color_assign,aspect_ratio=:equal)
end
#end statement for the module
end
julia> @time m.mandelbrot(1000,1000)
2.260481 seconds (6.01 M allocations: 477.081 MiB, 9.56% gc time)
Here is what should help:
function mandelbrot(reals,imags)
r = LinRange(-2,1,reals)
i = LinRange(0,1,imags)
master_list = zeros(Complex{Float64},reals*imags,1)
color_assign = Array{RGB{Float64}}(undef,reals*imags,1)
Threads.@threads for a in 1:reals
real_num = r[a]
for (b, imaginary_num) in enumerate(i)
n = (a-1)*imags + b
master_list[n] = complex(real_num, imaginary_num)
color_assign[n, 1] = (brot ∘ mandel)(complex(real_num, imaginary_num))
end
end
gr(markerstrokewidth=0,markerstrokealpha=0,markersize=1,legend=false)
scatter(master_list,markerstrokecolor=color_assign,color=color_assign,aspect_ratio=:equal)
end
The approach is to compute n
as a function of indices along r
and i
.
Also note that I use 1:reals
and not just enumerate(r)
as Threads.@threads
does not accept arbitrary iterators.
Note though that your code could probably be cleaned up in other but it is hard to do this without a fully reproducible example.