I have been attempting to use sklearn to create some test data for a linear regression model. The error I am getting is 'fit() missing 1 required positional argument: 'y''
from sklearn.model_selection import train_test_split
X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression
lm.fit(X_train,y_train)
I have tried looking at this link 'https://stackoverflow.com/questions/35996970/typeerror-fit-missing-1-required-positional-argument-y' but I cannot fix it.
Try
from sklearn.model_selection import train_test_split
X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,y_train)
you forgot ()
after lm = LinearRegression