I'm new to Python and am really struggling to get a sensible colourmap for my data.
I'm plotting 29x29 numpy arrays, where most of the cells are 0 but on average around 10-15 cells have non-zero values which can range from low 10s to several 1000s.
In C++ ROOT you automatically get a nice plot that has a white background and a nice rainbow colourbar that you can see below.
However, in matplotlib, following the advice here:
python matplotlib heatmap colorbar from transparent With the code:
from matplotlib.colors import LinearSegmentedColormap
%matplotlib inline
#Lets visualise some events
# plot states
# plot states
# get colormap
ncolors = 256
color_array = plt.get_cmap('gist_rainbow')(range(ncolors))
# change alpha values
color_array[:,-1] = np.linspace(1.0,0.0,ncolors)
# create a colormap object
map_object = LinearSegmentedColormap.from_list(name='rainbow_alpha',colors=color_array)
# register this new colormap with matplotlib
plt.register_cmap(cmap=map_object)
# set colourbar map
cmap_args=dict(cmap='jet')
fig, axarr = plt.subplots(nrows=1, ncols=3)
axarr[0].imshow(events[0],**cmap_args)
axarr[0].set_title('Event0',fontsize=16)
axarr[0].tick_params(labelsize=16)
axarr[1].imshow(events[1],**cmap_args)
axarr[1].set_title('Event1',fontsize=16)
axarr[1].tick_params(labelsize=16)
axarr[2].imshow(events[2],**cmap_args)
axarr[2].set_title('Event2',fontsize=16)
axarr[2].tick_params(labelsize=16)
fig.subplots_adjust(right=2.0)
plt.show()
I get images like the one below, which is impossible to read.
Please can someone explain how to get a white background and a rainbow colourbar on the side of the plot?
Thanks a lot!
To show all zero values as white, a 'under' color could be set. The under color is used for values that are lower than the lowest value in the colorbar. Forcing the colorbar to start at 1 with vmin=1
makes all values lower than 1 to be considered 'under'.
from matplotlib import pyplot as plt
import numpy as np
from matplotlib.ticker import MultipleLocator
#%matplotlib inline
# create a colormap object
cmap = plt.get_cmap('rainbow')
cmap.set_under('white')
# set colourbar map
cmap_args = dict(cmap=cmap, vmin=1, vmax=8000)
fig, axarr = plt.subplots(nrows=1, ncols=4, figsize=(12, 3), gridspec_kw={'width_ratios': [10, 10, 10, 1]})
events = np.random.randint(0, 9, size=(3, 10, 10)) * 1000 * np.random.randint(0, 2, size=(3, 10, 10))
for ax, event, title in zip(axarr[:3], events, ['Event 0', 'Event 1', 'Event 2']):
img = ax.imshow(event, **cmap_args)
ax.set_title(title, fontsize=16)
ax.tick_params(labelsize=16)
ax.xaxis.set_major_locator(MultipleLocator(1))
ax.yaxis.set_major_locator(MultipleLocator(1))
fig.colorbar(img, cax=axarr[3])
# to make the colorbar exactly the same height as the image plots:
pos_ax2 = axarr[2].get_position()
pos_ax3 = axarr[3].get_position()
pos_ax3.y0 = pos_ax2.y0
pos_ax3.y1 = pos_ax2.y1
axarr[3].set_position(pos_ax3)
plt.show()