I want to calculate the row-wise mean of columns y_2010, y_2011, y_2012, y_2013, y_2014 of the dataframe (energy use data per year), however:
Calculation of the mean of 5 columns is easy, but I'm stuck at defining the conditions 'if median*0.8 <= one of the values in the data row <= median*1,2 then mean == mean of values within the boundary and 2 or more values are present.
So I'm trying to calculate the mean only for the data rows with no 'outliers'.
Initial df:
ID y_2010 y_2011 y_2012 y_2013 y_2014
23 22631 21954.0 22314.0 22032 21843
43 27456 29654.0 28159.0 28654 2000
36 61200 NaN NaN 31895 1600
87 87621 86542.0 87542.0 88456 86961
90 58951 57486.0 2000.0 0 0
98 24587 25478.0 NaN 24896 25461
Desired df:
ID y_2010 y_2011 y_2012 y_2013 y_2014 mean
0 23 22631 21954.0 22314.0 22032 21843 22154.8
1 43 27456 29654.0 28159.0 28654 2000 28480.75
2 36 61200 NaN NaN 31895 1600 NaN
3 87 87621 86542.0 87542.0 88456 86961 87424.4
4 90 58951 57486.0 2000.0 0 0 NaN
5 98 24587 25478.0 NaN 24896 25461 25105.5
Tried code so far (I'm stuck at getting the conditions right and apply them to the dataframe):
import pandas as pd
import numpy as np
df = pd.DataFrame({"ID": [23,43,36,87,90,98],
"y_2010": [22631,27456,61200,87621,58951,24587],
"y_2011": [21954,29654,np.nan,86542,57486,25478],
"y_2012": [22314,28159,np.nan,87542,2000,np.nan],
"y_2013": [22032,28654,31895,88456,0,24896,],
"y_2014": [21843,2000,1600,86961,0,25461]})
print(df)
a = df.loc[:, ['y_2010','y_2011','y_2012','y_2013', 'y_2014']]
# calculate median
median = a.median(1)
print(median)
# where condition is violated
mask = a.lt(median*.8, axis=0) | a.gt(median*1.2, axis=0)
I think your mask is right, then from there you can try this:
col_mean = a[~mask].mean(axis=1)
nan_mask = ~(mask.sum(axis=1) >= 2)
a["mean"] = col_mean.where(nan_mask, other=np.NaN)
print(a)
Output:
y_2010 y_2011 y_2012 y_2013 y_2014 mean
0 22631 21954.0 22314.0 22032 21843 22154.80
1 27456 29654.0 28159.0 28654 2000 28480.75
2 61200 NaN NaN 31895 1600 NaN
3 87621 86542.0 87542.0 88456 86961 87424.40
4 58951 57486.0 2000.0 0 0 NaN
5 24587 25478.0 NaN 24896 25461 25105.50