First, sorry if this question looks "silly", because I'm new to MPFR, LOL.
I have two mpfr_t
variables with precision of 1024, and they have the value of 0.2 and 0.06 stored in them.
But when I add these variables, things goes wrong and the result (which is also a mpfr_t
variable) has the value of 0.2599999...
This is strange because the MPFR library should maintain the precision (isn't it?).
Could you please help me with this? Thanks so much, so much in advance.
MPFR numbers are represented in binary (base 2). In this system, the only numbers that can be represented exactly have the form N·2k, where N and k are integers. Neither 0.2 = 1/5 nor 0.06 = 3/50 have this form, so that they are approximated with some small error. When you add these variables, you are seeing a consequence of this error (there may be also another error in the addition operation since in binary these numbers have many nonzero digits, unlike in decimal).
This is the same issue as the one described in: Is floating point math broken?
EDIT:
To answer the question in comment "Is there a way to avoid this situation?", no, there is no way to avoid this situation in practice, except in very specific cases. For instance, if all your numbers (inputs and results of each intermediate operations) are decimal numbers, representable with a small enough number of digits, you can use a decimal arithmetic (but MPFR can't do that). Computer algebra systems may help in some cases. There's also iRRAM... I'll come back to it later.
However, there are solutions to attempt to hide issues with numerical errors. You need to estimate the maximum possible error on a computed value. With an error analysis, you can obtain rigorous bounds, but this may be difficult or take time to do. Note that rigorous bounds are pessimistic in general, but if you use arbitrary precision (e.g. with MPFR), this is less an issue. The analysis can be done dynamically with interval arithmetic (still pessimistic, even worse). But perhaps a simple estimate is sufficient for you. Once you have an estimate of the maximum error:
Note: MPFR won't do that for you. But you can write code to take these rules into account.
The iRRAM package, which is based on MPFR, can track the error in a rigorous way (like with interval arithmetic) and automatically redo all the computations in a higher precision if it notices that the accuracy is too low. However, if some mathematical result is a discontinuity point, iRRAM won't help. In particular, it cannot provide a rigorous equality test.
Finally, I suggest that you have a look at Goldberg's paper What Every Computer Scientist Should Know About Floating-Point Arithmetic, in particular the notion of cancellation.