Search code examples
tensorflow-federated

When using building a federated averaging process - TypeError: Expected a callable.... found Enhanced Model


1 issue at large

I am producing a iterative process via tff.learning.build_federated_averaging_process(). and receive the error:


    Traceback (most recent call last):
      File "B:\tools and software\Anaconda\envs\bookProjects\lib\site-packages\IPython\core\interactiveshell.py", line 3331, in run_code
        exec(code_obj, self.user_global_ns, self.user_ns)
      File "<ipython-input-2-47998fd56829>", line 1, in <module>
        runfile('B:/projects/openProjects/githubprojects/BotnetTrafficAnalysisFederaedLearning/anomaly-detection/train_v04.py', args=['--experiment_name=temp', '--client_batch_size=20', '--client_optimizer=sgd', '--client_learning_rate=0.2', '--server_optimizer=sgd', '--server_learning_rate=1.0', '--total_rounds=200', '--rounds_per_eval=1', '--rounds_per_checkpoint=50', '--rounds_per_profile=0', '--root_output_dir=B:/projects/openProjects/githubprojects/BotnetTrafficAnalysisFederaedLearning/anomaly-detection/logs/fed_out/'], wdir='B:/projects/openProjects/githubprojects/BotnetTrafficAnalysisFederaedLearning/anomaly-detection')
      File "B:\tools and software\PyCharm 2020.1\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile
        pydev_imports.execfile(filename, global_vars, local_vars)  # execute the script
      File "B:\tools and software\PyCharm 2020.1\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
        exec(compile(contents+"\n", file, 'exec'), glob, loc)
      File "B:/projects/openProjects/githubprojects/BotnetTrafficAnalysisFederaedLearning/anomaly-detection/train_v04.py", line 306, in <module>
        app.run(main)
      File "B:\tools and software\Anaconda\envs\bookProjects\lib\site-packages\absl\app.py", line 299, in run
        _run_main(main, args)
      File "B:\tools and software\Anaconda\envs\bookProjects\lib\site-packages\absl\app.py", line 250, in _run_main
        sys.exit(main(argv))
      File "B:/projects/openProjects/githubprojects/BotnetTrafficAnalysisFederaedLearning/anomaly-detection/train_v04.py", line 299, in main
        train_main()
      File "B:/projects/openProjects/githubprojects/BotnetTrafficAnalysisFederaedLearning/anomaly-detection/train_v04.py", line 262, in train_main
        server_optimizer_fn=server_optimizer_fn,
      File "B:\tools and software\Anaconda\envs\bookProjects\lib\site-packages\tensorflow_federated\python\learning\federated_averaging.py", line 211, in build_federated_averaging_process
        stateful_delta_aggregate_fn, stateful_model_broadcast_fn)
      File "B:\tools and software\Anaconda\envs\bookProjects\lib\site-packages\tensorflow_federated\python\learning\framework\optimizer_utils.py", line 498, in build_model_delta_optimizer_process
        py_typecheck.check_callable(model_fn)
      File "B:\tools and software\Anaconda\envs\bookProjects\lib\site-packages\tensorflow_federated\python\common_libs\py_typecheck.py", line 106, in check_callable
        type_string(type(target))))
    TypeError: Expected a callable, found non-callable tensorflow_federated.python.learning.model_utils.EnhancedModel.

highlighting:

in build_federated_averaging_process
    stateful_delta_aggregate_fn, stateful_model_broadcast_fn)

and

TypeError: Expected a callable, found non-callable tensorflow_federated.python.learning.model_utils.EnhancedModel.

2 have tried

  1. looked at another similar issue here have tried to make model_fn a collection.abc Callable, model_fn=Callable[[], model_fn] only creates a new error.

3 some code:

  • iterative process:

    
    
     model_fn = model_builder(input_dim=sysarg,
                                 input_spec=input_spec)
        iterative_process = tff.learning.build_federated_averaging_process(
            model_fn=model_fn,
            client_optimizer_fn=client_optimizer_fn,
            server_optimizer_fn=server_optimizer_fn,
        )
        iterative_process = compression_process_adapter.CompressionProcessAdapter(iterative_process)```
    
  • model bulder:


    def model_builder(input_dim, input_spec):
           model = create_model(input_dim)
            return tff.learning.from_keras_model(keras_model=model,
                                                 loss=tf.keras.losses.MeanSquaredError(),
                                                 input_spec=input_spec,
                                                 metrics=[tf.keras.metrics.Accuracy()],
                                                 )

  • create model (for good measure)

    def create_model(input_dim):
           autoencoder = Sequential([
                tf.keras.layers.Dense(int(0.75 * input_dim), activation="tanh", input_shape=(input_dim,)),
                tf.keras.layers.Dense(int(0.5 * input_dim), activation="tanh"),
                tf.keras.layers.Dense(int(0.33 * input_dim), activation="tanh"),
                tf.keras.layers.Dense(int(0.25 * input_dim), activation="tanh"),
                tf.keras.layers.Dense(int(0.33 * input_dim), activation="tanh"),
                tf.keras.layers.Dense(int(0.5 * input_dim), activation="tanh"),
                tf.keras.layers.Dense(int(0.75 * input_dim), activation="tanh"),
                tf.keras.layers.Dense(input_dim)
                ])


Solution

  • The model_fn argument of tff.learning.build_federated_averaging_process needs to be a callable (What is a callable?) that takes no arguments and returns a tff.learning.Model.

    From the code (reproduced here for readability):

    def model_builder(input_dim, input_spec):
      model = create_model(input_dim)
      return tff.learning.from_keras_model(
        keras_model=model,
        loss=tf.keras.losses.MeanSquaredError(),
        input_spec=input_spec,
        metrics=[tf.keras.metrics.Accuracy()])
    
    model_fn = model_builder(input_dim=sysarg, input_spec=input_spec)
    
    iterative_process = tff.learning.build_federated_averaging_process(
      model_fn=model_fn,
      client_optimizer_fn=client_optimizer_fn,
      server_optimizer_fn=server_optimizer_fn)
    

    model_fn is actually an instance of tff.learning.Model, rather than a callable that constructs and returns a model.

    model_builder should be passed to tff.learning.build_federated_averaging_process, but since it takes arguments this won't work as-is.

    One alternative would be to use functools.partial:

    iterative_process = tff.learning.build_federated_averaging_process(
      model_fn=functools.partial(model_builder, input_dim=sysarg, input_spec=input_spec),
      client_optimizer_fn=client_optimizer_fn,
      server_optimizer_fn=server_optimizer_fn)
    

    Or even use a no-arg lambda:

    iterative_process = tff.learning.build_federated_averaging_process(
      model_fn=lambda: model_builder(input_dim=sysarg, input_spec=input_spec),
      client_optimizer_fn=client_optimizer_fn,
      server_optimizer_fn=server_optimizer_fn)
    

    The following question has a good discussion on the differences between lambdas and partials: Python: Why is functools.partial necessary?