Suppose I have a dataset of the following form:
City=c(1,2,2,1)
Business=c(2,1,1,2)
ExpectedRevenue=c(35,20,15,19)
zz=data.frame(City,Business,ExpectedRevenue)
zz_new=do.call("rbind", replicate(zz, n=30, simplify = FALSE))
My actual dataset contains about 200K rows. Furthermore, it contains information for over 100 cities. Suppose, for each city (which I also call "Type"), I have the following functions which need to be applied:
#Writing the custom functions for the categories here
Type1=function(full_data,observation){
NewSet=full_data[which(!full_data$City==observation$City),]
BusinessMax = max(NewSet$ExpectedRevenue)+10*rnorm(1)
return(BusinessMax)
}
Type2=function(full_data,observation){
NewSet=full_data[which(!full_data$City==observation$City),]
BusinessMax = max(NewSet$ExpectedRevenue)-100*rnorm(1)
return(BusinessMax)
}
Once again the above two functions are extremely simply ones that I use for illustration. The idea here is that for each City (or "Type") I need to run a different function for each row in my dataset. In the above two functions, I used rnorm in order to check and make sure that we are drawing different values for each row.
Now for the entire dataset, I want to first divide the observation into its different City (or "Types"). I can do this using (zz_new[["City"]]==1) [also see below]. And then run the respective functions for each classes. However, when I run the code below, I get -Inf.
Can someone help me understand why this is happening?
For the example data, I would expect to obtain 20 plus 10 times some random value (for Type =1) and 35 minus 100 times some random value (for Type=2). The values should also be different for each row since I am drawing them from a random normal distribution.
library(dplyr) #I use dplyr here
zz_new[,"AdjustedRevenue"] = case_when(
zz_new[["City"]]==1~Type1(full_data=zz_new,observation=zz_new[,]),
zz_new[["City"]]==2~Type2(full_data=zz_new,observation=zz_new[,])
)
Thanks a lot in advance.
Let's take a look at your code. I rewrite your code
library(dplyr)
zz_new[,"AdjustedRevenue"] = case_when(
zz_new[["City"]]==1~Type1(full_data=zz_new,observation=zz_new[,]),
zz_new[["City"]]==2~Type2(full_data=zz_new,observation=zz_new[,])
)
to
zz_new %>%
mutate(AdjustedRevenue = case_when(City == 1 ~ Type1(zz_new,zz_new),
City == 2 ~ Type2(zz_new,zz_new)))
since you are using dplyr
but don't use the powerful tools provided by this package.
Besides the usage of mutate
one key change is that I replaced zz_new[,]
with zz_new
. Now we see that both arguments of your Type
-functions are the same dataframe.
Next step: Take a look at your function
Type1 <- function(full_data,observation){
NewSet=full_data[which(!full_data$City==observation$City),]
BusinessMax = max(NewSet$ExpectedRevenue)+10*rnorm(1)
return(BusinessMax)
}
which is called by Type1(zz_new,zz_new)
. So the definition of NewSet
gives us
NewSet=full_data[which(!full_data$City==observation$City),]
# replace the arguments
NewSet <- zz_new[which(!zz_new$City==zz_new$City),]
Thus NewSet
is always a dataframe with zero rows. Applying max
to an empty column of a data.frame yields -Inf
.