When executing the following
# Tensorflow board
log_dir="logs" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,histogram_freq=1)
I get the following
TypeError: Value passed to parameter 'values' has DataType bool not in list of allowed values: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, float16, uint32, uint64
When I remove histogram_freq=1
, it fixes the issue.
Is there way to visualize histogram_freq=1
? without that error being thrown ?
histogram_freq = 1
enables Visualization
of Histogram
computation every epoch.
Since complete code is not present in the question, mentioning the Complete Sample Code in which Weights
and Biases
are Visualized with histogram_freq = 1
.
# Load the TensorBoard notebook extension
%load_ext tensorboard
import tensorflow as tf
import datetime
# Clear any logs from previous runs
!rm -rf ./logs/
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
model.fit(x=x_train,
y=y_train,
epochs=5,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback])
%tensorboard --logdir logs/fit
The Histogram of Weights and Biases with histogram_freq = 1
is shown below:
For more information, please refer this Tutorial on Tensorboard.
Please let me know if you face any other error, along with complete reproducible code and I will be Happy to help you.
Hope this helps. Happy Learning!