I want to use GSDMM to assign topics to some tweets in my data set. The only examples I found (1 and 2) are not detailed enough. I was wondering if you know of a source (or care enough to make a small example) that shows how GSDMM is implemented using python.
I finally compiled my code for GSDMM and will put it here from scratch for others' use. I have tried to comment on important parts:
# Imports
import random
import numpy as np
from gensim.models.phrases import Phraser, Phrases
from gensim.utils import simple_preprocess
from gsdmm import MovieGroupProcess
# data
data = ...
# stop words
stop_words = ...
# turning sentences into words
data_words =[]
for doc in data:
doc = doc.split()
data_words.append(doc)
# create vocabulary
vocabulary = ...
# Removing stop Words
stop_words.extend(['from', 'rt'])
def remove_stopwords(texts):
return [
[
word
for word in simple_preprocess(str(doc))
if word not in stop_words
]
for doc in texts
]
data_words_nostops = remove_stopwords(vocabulary)
# building bi-grams
bigram = Phrases(vocabulary, min_count=5, threshold=100)
bigram_mod = Phraser(bigram)
print('done!')
# Form Bigrams
data_words_bigrams = [bigram_mod[doc] for doc in data_words_nostops]
# lemmatization
pos_to_use = ['NOUN', 'ADJ', 'VERB', 'ADV']
data_lemmatized = []
for sent in data_words_bigrams:
doc = nlp(" ".join(sent))
data_lemmatized.append(
[token.lemma_ for token in doc if token.pos_ in pos_to_use]
)
docs = data_lemmatized
vocab = set(x for doc in docs for x in doc)
# Train a new model
random.seed(1000)
# Init of the Gibbs Sampling Dirichlet Mixture Model algorithm
mgp = MovieGroupProcess(K=10, alpha=0.1, beta=0.1, n_iters=30)
vocab = set(x for doc in docs for x in doc)
n_terms = len(vocab)
n_docs = len(docs)
# Fit the model on the data given the chosen seeds
y = mgp.fit(docs, n_terms)
def top_words(cluster_word_distribution, top_cluster, values):
for cluster in top_cluster:
sort_dicts = sorted(
mgp.cluster_word_distribution[cluster].items(),
key=lambda k: k[1],
reverse=True,
)[:values]
print('Cluster %s : %s'%(cluster,sort_dicts))
print(' — — — — — — — — — ')
doc_count = np.array(mgp.cluster_doc_count)
print('Number of documents per topic :', doc_count)
print('*'*20)
# Topics sorted by the number of document they are allocated to
top_index = doc_count.argsort()[-10:][::-1]
print('Most important clusters (by number of docs inside):', top_index)
print('*'*20)
# Show the top 10 words in term frequency for each cluster
top_words(mgp.cluster_word_distribution, top_index, 10)
Links