Search code examples
rif-statementnestedconditional-statementsraster

Nested conditional-statements relating multiple rasters


Assume I have four raster files: x, y, w and z and I want to create a new raster file based on the relationship of all of them (i.e., the hierarchical order of grid cells) using multiple nested conditionals as per function below:

x <- raster(nrows=100, ncols=100)
  x[] <- runif(ncell(x), min = 0, max = 100)
y <- raster(nrows=100, ncols=100)
  y[] <- runif(ncell(y), min = 0, max = 100)
w <- raster(nrows=100, ncols=100)
  w[] <- runif(ncell(w), min = 0, max = 100)
z <- raster(nrows=100, ncols=100)
  z[] <- runif(ncell(z), min = 0, max = 100)

My.fun <- function(x,y,z,w){
ifelse(x > y && x > w && x > z,
1,
ifelse(y > x && y > w && y > z,
2,
ifelse(w > x && w > y && w > z,
3,
ifelse(z > x && z > y && z > w,
4,NA),NA),NA),NA)
}

res <- overlay(x, y, z, w, fun = Vectorize(My.fun))

This is what I came up with so far. Yet, it does not seem to work. Wondering if anyone could give me a hand and shed some light on how I could sort it out?

Error message:

Error in (function (x, fun, filename = "", recycle = TRUE, forcefun = FALSE, : cannot use this formula, probably because it is not vectorized"

Many thanks.


Solution

  • There are a couple of problems here. Firstly, your ifelse statements have too many arguments (the first 3 have an unnecessary NA at the end. Secondly, you need to compare the data within each raster using e.g. x[] < y[] rather than x < y. Thirdly, you should have a single & rather than &&.

    This way, your function is already vectorised:

    My.fun <- function(x,y,z,w){
      ifelse(x[] > y[] & x[] > w[] & x[] > z[], 1,
             ifelse(y[] > x[] & y[] > w[] & y[] > z[], 2,
                    ifelse(w[] > x[] & w[] > y[] & w[] > z[], 3,
                           ifelse(z[] > x[] & z[] > y[] & z[] > w[], 4, NA))))
    }
    

    So you can do:

    My.fun(x, y, w, z)
    #>    [1] 3 1 3 2 3 4 2 3 1 3 4 4 3 4 1 2 2 1 2 3 4 3 4 4 1 1 3 2 3 1 2 4 2 4 2 4
    #>   [37] 1 4 4 2 2 4 1 2 3 2 2 3 1 1 1 2 3 4 4 4 3 4 4 2 3 2 2 4 2 2 3 1 1 4 1 4
    #>   [73] 2 2 2 3 3 2 1 4 1 3 3 4 4 4 4 1 4 3 2 1 4 1 1 2 3 1 3 3 1 3 4 4 1 1 4 3
    #>  [109] 4 3 1 4 4 1 2 3 1 3 2 4 1 4 1 2 2 3 2 3 2 1 3 1 3 2 2 3 3 1 3 1 3 3 3 2
    #>  [145] 1 4 4 3 2 1 3 1 3 1 1 1 4 2 3 1 1 4 2 3 1 3 2 2 2 2 3 1 1 3 4 1 2 1 1 2
    #>  [181] 2 3 4 1 4 1 3 3 1 4 3 2 3 1 1 2 4 3 1 3 2 1 4 2 4 3 2 1 1 1 1 1 1 1 2 3
    #>  [217] 4 4 2 1 2 2 1 3 2 3 3 3 4 3 2 1 2 2 4 2 4 4 2 2 4 3 4 3 1 2 4 4 4 3 2 2
    #>  [253] 2 4 3 4 4 3 1 3 2 4 3 2 2 2 4 3 3 4 4 3 3 4 3 4 3 1 1 1 1 3 2 3 3 3 1 2
    #>  [289] 1 4 4 4 3 4 3 4 3 2 2 3 1 3 1 1 1 1 3 2 4 4 4 1 1 3 4 4 4 3 4 1 2 1 1 4
    #>  [325] 4 4 2 4 2 3 4 4 2 3 1 1 1 4 3 2 3 4 4 1 3 3 4 1 3 1 2 4 1 1 2 1 2 4 2 4
    #>  [361] 3 3 2 2 1 1 4 2 1 3 4 4 3 1 2 2 3 4 2 4 2 3 1 4 3 3 3 4 2 2 1 2 2 1 4 1
    #>  [397] 1 1 3 4 3 1 2 1 1 2 3 3 4 2 1 1 1 3 3 1 2 2 1 3 1 4 1 4 2 3 2 2 1 4 1 4
    #>  [433] 4 1 3 3 1 1 1 1 3 1 2 1 1 4 2 3 4 4 2 1 3 4 4 4 4 4 2 4 2 3 4 2 2 3 1 4
    #>  [469] 3 1 3 3 3 2 1 4 1 4 2 2 3 1 3 2 1 4 3 3 2 4 4 4 3 3 1 2 1 4 4 1 3 1 2 3
    #>  [505] 2 1 4 2 4 2 4 4 4 4 2 3 2 3 2 2 1 3 2 3 1 3 1 3 2 1 3 1 2 2 2 4 3 4 2 4
    #>  [541] 1 4 1 2 3 3 3 2 1 1 3 4 2 1 1 4 4 2 4 4 2 2 3 4 1 4 1 3 2 4 3 3 1 2 2 1
    #>  [577] 2 2 3 1 3 1 1 3 4 2 1 3 3 3 3 1 1 2 3 2 1 1 1 4 1 2 1 3 4 4 4 1 1 3 1 1
    #>  [613] 3 3 1 1 3 3 1 2 1 1 4 4 1 2 1 3 2 3 1 4 2 3 3 4 3 4 1 2 3 4 3 3 2 4 3 2
    #>  [649] 1 3 2 4 2 4 3 1 1 1 2 4 3 2 2 4 4 2 4 2 4 1 3 2 2 3 2 2 2 3 4 1 1 3 2 3
    #>  [685] 1 2 4 3 2 2 4 4 3 2 1 2 4 3 2 4 4 2 2 1 2 3 1 1 3 3 3 1 4 2 2 2 2 3 2 3
    #>  [721] 3 3 2 1 4 3 1 1 3 4 4 2 1 3 4 3 3 4 4 1 3 2 4 3 2 3 1 2 3 4 3 4 3 3 3 2
    #>  [757] 4 3 2 3 1 2 4 4 4 3 4 3 4 2 3 2 4 4 4 4 2 4 2 1 1 3 4 3 3 1 3 4 3 4 1 1
    #>  [793] 4 1 4 3 4 3 4 4 4 1 3 1 2 3 3 3 4 4 3 4 3 2 3 3 4 1 1 4 4 3 1 1 2 1 2 2
    #>  [829] 2 1 1 3 2 4 4 1 3 2 3 4 2 3 2 3 2 3 4 4 4 4 1 3 2 3 2 2 3 2 4 1 1 4 4 2
    #>  [865] 3 2 2 3 3 1 2 3 3 1 2 4 4 1 3 2 3 2 4 4 2 1 2 1 3 4 1 2 1 1 3 3 1 1 1 3
    #>  [901] 3 4 2 1 1 4 4 4 2 1 3 3 3 1 4 3 1 2 3 1 1 1 3 2 1 4 1 1 4 1 4 1 1 3 1 2
    #>  [937] 2 2 2 3 2 2 2 2 3 2 4 3 2 2 2 3 2 4 2 4 1 1 4 2 2 4 4 1 4 4 4 4 2 4 2 4
    #>  [973] 4 1 4 3 1 2 3 1 3 2 3 3 2 1 3 1 2 1 2 3 1 3 4 3 3 2 3 2
    #>  [ reached getOption("max.print") -- omitted 9000 entries ]
    

    and

    wxyz <- raster(nrows=100, ncols=100)
    wxyz[] <- My.fun(x,y,z,w)
    wxyz
    #> class      : RasterLayer 
    #> dimensions : 100, 100, 10000  (nrow, ncol, ncell)
    #> resolution : 3.6, 1.8  (x, y)
    #> extent     : -180, 180, -90, 90  (xmin, xmax, ymin, ymax)
    #> crs        : +proj=longlat +datum=WGS84 
    #> source     : memory
    #> names      : layer 
    #> values     : 1, 4  (min, max)