Here is my custom loss function:
import tensorflow.keras.backend as K
import cmath
epsylon=np.finfo(float).eps
def to_array(tensor):
return tf.make_ndarray(tensor)
def addError(test,range_min,range_max,result):
err = abs(log(range_max/max(range_min,epsylon)))
if range_min <= test <= range_max:
result.append(err)
else:
e1=abs(log(test/max(range_min,epsylon)))
e2=abs(log(test/max(range_max,epsylon)))
result.append( min(e1,e2) / max(err,epsylon) *100 + err)
def rangeLoss(yTrue,yPred):
#print(type(yPred))
a_pred=to_array(yPred)
a_true=to_array(yTrue)
result=[]
for i in range(a_true.size):
range_min=abs(a_pred[i*2])
range_max=abs(a_pred[i*2+1])
test= abs(a_true[i])
addError(test,range_min,range_max,result)
return tf.constant(result)
When I run training, it fails with
/home/ubuntu/.local/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py:591 MakeNdarray
shape = [d.size for d in tensor.tensor_shape.dim]
AttributeError: 'Tensor' object has no attribute 'tensor_shape'
When I modify to_array to use proto tensor
def to_array(tensor):
proto_tensor = tf.make_tensor_proto(tensor)
return tf.make_ndarray(proto_tensor)
I get following error:
/home/ubuntu/.local/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py:451 make_tensor_proto
_AssertCompatible(values, dtype)
/home/ubuntu/.local/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py:328 _AssertCompatible
raise TypeError("Expected any non-tensor type, got a tensor instead.")
TypeError: Expected any non-tensor type, got a tensor instead.
Another option I've tried was tensor.numpy()
, which resulted in following error:
<ipython-input-20-0a8051a4a034>:8 to_array
return tensor.numpy()
AttributeError: 'Tensor' object has no attribute 'numpy'
And of course there is tensor.eval(session=tf.compat.v1.Session())
, which fails too
How do I do this?
I have solved the issue by slicing the original tensor. Here is the code:
def above_zero(value):
return tf.math.maximum(value,np.finfo(float).eps)
def range_loss(yTrue,yPred):
#shapes: yTrue: (None,1)
# yPred: (None,2)
yTrueSize=yTrue.shape[1]
min=above_zero(tf.math.abs(yPred[:,:yTrueSize]))
max=above_zero(tf.math.abs(yPred[:,yTrueSize:]))
#following step should not be needed, but let's do it just in case
yTrue=above_zero(tf.math.abs(yTrue))
baseError = tf.math.abs(tf.math.log(max/min))
baseErrorDiv = above_zero(baseError)
topRange = tf.math.maximum(min,max)
bottomRange = tf.math.minimum(min,max)
extraError = tf.math.maximum(0.0,tf.math.log(yTrue/topRange))+tf.math.maximum(0.0,tf.math.log(bottomRange/yTrue))
extraError /= baseErrorDiv
totalError=tf.math.pow(extraError,2.0)*100+tf.math.pow(baseError,2.0)
return tf.math.reduce_sum(totalError)