I'm working on a reStructuredText transpiler in Rust, and am in need of some advice concerning how lexing should be structured in languages that have recursive structures. For example lists within lists are possible in rST:
* This is a list item
* This is a sub list item
* And here we are at the preceding indentation level again.
The default docutils.parsers.rst
took the approach of scanning the input one line at a time:
The reStructuredText parser is implemented as a state machine, examining its input one line at a time.
The state machine mentioned basically operates on a set of states of the form (regex, match_method, next_state)
. It tries to match the current line to the regex
based on the current state and runs match_method
while transitioning to the next_state
if a match succeeds, doing this until it runs out of lines to scan.
My question then is, is this the best approach to scanning a language such as rST? My approach thus far has been to create a Chars
iterator of the source and eat away at the source while trying to match against structures at the current Unicode scalar. This works to some extent when all I'm doing is scanning inline content, but I've now run into the realization that handling recursive body level structures like nested lists is going to be a pain in the butt. It feels like I'm going to need a whole bunch of states with duplicate regexes and related methods in many states for matching against indentations before new lines and such.
Would it be better to simply have and iterator of the lines of the source and match on a per-line basis, and if a line such as
* this is an indented list item
is encountered in State::Body
, simply transition to a state such as State::BulletList
and start lexing lines based on the rules specified there? The above line could be lexed for example as a sequence
TokenType::Indent, TokenType::Bullet, TokenType::BodyText
Any thoughts on this?
I don't know much about rST. But you say it has "recursive" structures. If that's that case, you can't fully lex it as a recursive structure using just state machines or regexes or even lexer generators.
But this the wrong way to think about it. The lexer's job is to identify the atoms of the language. A parser's job is to recognize structure, especially if it is recursive (yes, parsers often build trees recording the recursive structures they found). So build the lexer ignoring context if you can, and use a parser to pick up the recursive structures if you need them. You can read more about the distinction in my SO answer about Parsers Vs. Lexers https://stackoverflow.com/a/2852716/120163
If you insist on doing all of this in the lexer, you'll need to augment it with a pushdown stack to track the recursive structures. Then what are you building is a sloppy parser disguised as lexer. (You will probably still want a real parser to process the output of this "lexer").
Having a pushdown stack actually useful if the language has different atoms in different contexts especially if the contexts nest; in this case what you want is mode stack that you change as the lexer encounters tokens that indicate a switch from one mode to another. A really useful extension of this idea is to have mode changes select what amounts to different lexers, each of which produces lexemes unique to that mode.
As an example you might do this to lex a language that contains embedded SQL. We build parsers for JavaScript; our lexer uses a pushdown stack to process the content of regexp literals and track nesting of { ... } [...] and (... ). (This has arguably a downside: it rejects versions of JQuery.js that contain malformed regexes [yes, they exist]. Javascript doesn't care if you define a bad regex literal and never use it, but that seems pretty pointless.)
A special case of the stack occurs if you only have track single "(" ... ")" pairs or the equivalent. In this case you can use a counter to record how many "pushes" or "pop" you might have done on a real stack. If you have two or more pairs of tokens like this, counters don't work.