I am working on a project where the final values (in column 'Amount') are compared against values in other columns to determine whether the final values are breached the pre-determined threshold. If breached, then the final value will be colored based on the breached threshold, if not, then the final value will be colored green. Sample:
df
Product Components Amount Yellow Orange Red Bound
A a1 61 50 55 60 Upper
A a2 28 60 30 20 Lower
A a3 37 10 5 0 Lower
B b1 89 90 100 110 Upper
B b2 91 100 95 90 Lower
C c1 5 10 15 20 Upper
C c2 29 30 20 10 Lower
C c3 15 100 200 300 Upper
C c4 201 500 400 300 Lower
Expected:
Attempt with code:
def highlight(df):
r = 'red'
g = 'green'
o = 'orange'
y = 'yellow'
yellow_up = (df['Amount'] > df['Yellow']) & (df['Amount'] < df['Orange']) & (df['Amount'] < df['Red']) & (df['Bound']=='Upper')
orange_up = (df['Amount'] > df['Yellow']) & (df['Amount'] > df['Orange']) & (df['Amount'] < df['Red']) & (df['Bound']=='Upper')
red_up = (df['Amount'] > df['Yellow']) & (df['Amount'] > df['Orange']) & (df['Amount'] > df['Red']) & (df['Bound']=='Upper')
yellow_down = (df['Amount'] < df['Yellow']) & (df['Amount'] > df['Orange']) & (df['Amount'] > df['Red']) & (df['Bound']=='Lower')
orange_down = (df['Amount'] < df['Yellow']) & (df['Amount'] < df['Orange']) & (df['Amount'] > df['Red']) & (df['Bound']=='Lower')
red_down = (df['Amount'] < df['Yellow']) & (df['Amount'] < df['Orange']) & (df['Amount'] < df['Red']) & (df['Bound']=='Lower')
df1 = pd.DataFrame('background-color: ', index = df.index, columns = df.columns)
df1['Amount'] = np.where(yellow_up, 'background-color: {}'.format(y), 'background-color: {}'.format(g))
df1['Amount'] = np.where(orange_up, 'background-color: {}'.format(o), 'background-color: {}'.format(g))
df1['Amount'] = np.where(red_up, 'background-color: {}'.format(r), 'background-color: {}'.format(g))
df1['Amount'] = np.where(yellow_down, 'background-color: {}'.format(y), 'background-color: {}'.format(g))
df1['Amount'] = np.where(orange_down, 'background-color: {}'.format(y), 'background-color: {}'.format(g))
df1['Amount'] = np.where(red_down, 'background-color: {}'.format(y), 'background-color: {}'.format(g))
return df1
df.style.apply(highlight, axis = None)
However, this doesn't work as expected. Thank you in advance for your help!
I would write the function as this:
def highlight(row):
color_map = {'Yellow':'yellow','Orange':'orange', 'Red':'red'}
name = row.name
thresh = df.loc[name, ['Yellow','Orange','Red']]
direction = -1 if df.at[name, 'Bound']=='Upper' else 1
value = row['Amount'] * direction
thresh = (thresh * direction).sort_values()
if (thresh > value).any():
color = color_map[(thresh > value).idxmax()]
else:
color = 'green'
return [f'background-color:{color}']
# apply
df.style.apply(highlight, subset=['Amount'], axis=1)
Output: