I have the following looking df for my paper on corona-tracking-apps (pd.melt was used on it):
CTQ-tool opinion
0 Information and awareness purposes unacceptable
1 Information and awareness purposes unacceptable
2 Information and awareness purposes acceptable
3 Information and awareness purposes acceptable
4 Information and awareness purposes unacceptable
... ... ...
2827 Central/Local data storage NaN
2828 Central/Local data storage NaN
2829 Central/Local data storage NaN
2830 Central/Local data storage NaN
2831 Central/Local data storage NaN
2832 rows × 2 columns
I am using Seaborn library to make the following catplot:
code:
g = sns.catplot("opinion", col="CTQ-tool", col_wrap=4, data=df_original_small, kind="count", height=6.5, aspect=.8)
However, instead of displaying these in bar charts I would like to present them as pie charts. The Seaborn.catplot does not allow for something kind='count-pie'. Does anyone know a work around?
EDIT after TiTo question:
this is basicly what I want to see happen to all 8 bar charts:
I ended up using matplotlib library to build it up from the bottem:
plt.style.use('seaborn')
IAP = df_original_small['Information and awareness purposes'].value_counts().to_frame().T
QE = df_original_small['Quarantine Enforcement'].value_counts().to_frame().T
CTCR = df_original_small['Contact Tracing and Cross-Referencing'].value_counts().to_frame().T
VPID = df_original_small['Voluntary provision of infection data'].value_counts().to_frame().T
QMA = df_original_small['Quarantine Monitoring App'].value_counts().to_frame().T
QRCode = df_original_small['QR code provided registration tracking'].value_counts().to_frame().T
total = pd.concat([IAP, QE, CTCR, VPID, QMA, QRCode])
fig, ax = plt.subplots(nrows=3, ncols=2)
labels = 'acceptable', 'unacceptable'
colors = ['#008fd5', '#fc4f30']
explode = (0, 0.1)
explode2 = (0.2, 0)
plt.title('Pie chart per CTQ-tool')
plt.tight_layout()
ax[0,0].pie(total.iloc[[0]], startangle=90, colors=colors, wedgeprops={'edgecolor': 'black'}, autopct='%1.f%%', explode=explode, shadow=True)
ax[0,0].set_title('Information and awareness purposes', fontweight='bold')
ax[0,1].pie(total.iloc[[1]], startangle=90, colors=colors, wedgeprops={'edgecolor': 'black'}, autopct='%1.f%%', explode=explode, shadow=True)
ax[0,1].set_title('Quarantine Enforcement', fontweight='bold')
ax[1,0].pie(total.iloc[[2]], startangle=90, colors=colors, wedgeprops={'edgecolor': 'black'}, autopct='%1.f%%', explode=explode2, shadow=True)
ax[1,0].set_title('Contact Tracing and Cross-Referencing', fontweight='bold')
ax[1,1].pie(total.iloc[[3]], startangle=90, colors=colors, wedgeprops={'edgecolor': 'black'}, autopct='%1.f%%', explode=explode, shadow=True)
ax[1,1].set_title('Voluntary provision of infection data', fontweight='bold')
ax[2,0].pie(total.iloc[[4]], startangle=90, colors=colors, wedgeprops={'edgecolor': 'black'}, autopct='%1.f%%', explode=explode2, shadow=True)
ax[2,0].set_title('Quarantine Monitoring App', fontweight='bold')
ax[2,1].pie(total.iloc[[5]], startangle=90, colors=colors, wedgeprops={'edgecolor': 'black'}, autopct='%1.f%%', explode=explode, shadow=True)
ax[2,1].set_title('QR code provided registration tracking', fontweight='bold')
fig.suptitle('Public Opinion on CTQ-measures', fontsize=20, y=1.07, fontweight='bold', x=0.37)
fig.set_figheight(10)
fig.set_figwidth(7)
fig.legend(loc='best', labels=labels, fontsize='medium')
fig.tight_layout()
fig.savefig('Opinions_ctq')
plt.show()